
Cop *r i gh t • C i i % 3 j t, r T r on im* = c h l 3 qe r L omp u 1-1- r i-imbH
l^r r 1" ten b - h 3 l l e Li =^un

Program and du«_umf n t ät i or, jr e p r u t * - « t^ -d L« - l n «

COLOUR-COMPILER Manual C o n t e n t s Page 2

What i s the CQLÜUR-CÜMPI LER Page 3

How to break out of COLOUR-COMPILER programs Page 4

COLOUR-COMPILER commands Page 5

Math operatorsPage 8

IF/THEN 1 ogi cal operators and condi t i on s Page 9

COLOUR-COMPILER and string-Functions Page 18

The com p i 1 at i on of BASI C programs Page 1 1

APPENDIX:

a) COLOUR-COMPILER error messages Page 12

b> COLOUR-COMPI LER var i ab) es Page 1 4

c> COLOUR-COMPILER memory map Page 15

d> Other information of interest Page 1 «±-

e > Si mu l a t i on of s t r i n gf u n c t i on s i n BnS 1C Page 17

COLOUR-COMPILER Manual What is the COLOUR-COMPILER Page 3

Uhat is the COLOUR-COMPILER

This manual assumes that you know how to write BASIC programs
on your Colour-Genie.

COLOUR-COMPILER is an interactive compiler, i . e . the user can
jump between the "source code" (your BASIC program) and the
compiled "object code" (mach inelanguage). Though i t is very
simple to change a program and recompile i t .
The process of compiling a BASIC program translates your BASIC
text into machine language. This is equal to the things your
BASIC interpreter does, but it translates one BASIC state-
ment, then executes i t . The COLOUR-COMPILER translates the
whole program, so it is executed much faster (there is nothing
to translate anymore). This compilating increases the speed of
your programs 28-288 times.

*** IMPORTANT: ***

COLOUR-COMPILER supports most of the BASIC statements given by
Colour-BASIC, but some words are not supported. Please read
this manual to know what statements are allowed.

Programs compiled by COLOUR-COMPILER don't support "active 1 1

commands l i k e BREAK, CLEAR, LIST, RUN, EDIT, AUTO, CONT, LLIST,
CLOAD, CSAVE, VERIFY, RENUM, SYSTEM etc. This means: on ly y o u
possess the source code, which makes i t easy to change the
program, other persons can not change i t .

A l l math operations are performed as integers, though you can
only use numbers in the range from -32768 to 32767. This makes
programs shorter and much faster.

If needed, you can simulate real arithmetic using special
machine language subroutines.

Attention: Some BASIC statements have different results before
and after c o m p i l i n g them (See page 5).
PLEASE READ THIS MANUAL CAREFULLY!!!

COLOUR-COMPILER DOES NOT TEST FOR RUN-TIME-ERRORS.
Berause of this: Test your BASIC program carefully before
compi l i n g it. If it runs in BASIC it w i l l run after c o m p i l i n g
i t, too.)
If COLOUR-COMPILER has to find run-time-errors, your programs
speed would be decreased and its length increased!!

How to break out of COLOUR-COMPILER programs

The <BREAK> key is not tested by your compiled programs. To
leave a compiled program, insert the -following statement in
your program (in a loop or after an INPUT statement):

<lineno.> IF PEEK<-1984>=4 THEN STOP

If the <BREAK> key is pressed, when this l i n e is executed, the
program w i l l return to the Colour-BASIC READY.

EXAMPLE;

10 FOR X=17408 TO 18367:POKE X,65
28 IF PEEK<-1984>=4 THEN STOP
30 NEXT X:END

At the end of your BASIC program must be an END or STOP state-
ment to return to READY. If there is no such statement, the
only way to stop your program is to press both RST keys. This
may destroy your program!!!!

COLOUR-COMPILER Manual How to break out Page 4

COLOUR-COMPILER Manual Supported commands Page 5

COLOUR-COMPILER commands

* Please use this manual in connection with your BASIC
* re-ference manual .

BASIC statement

ABS< argument)

AND

Descr i p t i on

Same as BASIC

Same as BASIC, but works only as
maths operator. In IF/THEN statements
use IF A=B THEN IF B=C THEN ... in-
stead of IF A=B AND B=C THEN ...

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Is ignored by COLOUR-COMPILER (See
page 11, too)

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC, but strings are not
al1 owed.

Returns to BASIC'S READY.

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC, but unnecessary

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

ASC<var*)

BGRD

CALL hexno.

CHAR argument

CHR*<argument)

CIRCLE x,y,r

CLEAR

CLS

COLOUR argument

CPOINT<x,y)

DATA number,number

END

FCLS

FCOLOUR argument

FGR

FILL argument

FIX< argumen t)

FOR

GOSUB

GOTO

INkEY*

COLOUR-COMPILER Manual Suppor ted commands Page

INP< argument)

INPUT var,var
INPUT var*

INT(ar gume n t)

JOY ar g. , d i r e c t i on

KEYPAD argument

LEN(var*)

LET .

LGR

LPRINT

NBGRD

NEXT var

NQT(argument)

NPLOT x,y

NSHAPE x,y

ON GOSUB

ON GOTO

OR

OUT arg., arg.

PAINT x,y,tl,f2

PEEK(argument)

PLAY < c h,oc t,n ot,amp)

PLOT x,x

POKE arg.,arg.

POS(dummy)

PRINT (PRINT^)

Same as BASIC

Same as BASIC. String INPUT accepts
all characters i n c l u d i n g hyphens,
commas and colons. INPUT A*,B* is not
allowed. A number in the range -from
32768 to 65535 is converted into the
corresponding negative number:
(65536 « -1). Up to 249 characters
can be entered at one time*

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC, but LEN(A*+6*) is not
al 1 owed

Same as BASIC (See page 16, too)

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BAS1C. In IF/THEN, r e p lac e
IF A=B OR A=C THEN by
IF A=B THEN ... ELSE IF A=C THEN ...

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

COLOUR-COMPILER Manual Suppor ted commands Page

RANDOM

READ var,var

REM (or ')

RESTORE

RETURN

RND< argumen t)

SCALE argument

SGN(argument)

SHAPE x,x

SOUND x,y

SQR(argument)

STEP number

STOP

STR*< argument)

TO

USR< argument)

XSHAPE x,y

Same as BASIC

Same as BASIC. Strings are not
al1 owed

Same as BASIC, REMs are not compiled

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC, result is integer

Same as BASIC, variable steps are not
al1 owed

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

Same as BASIC

COLOUR-COMPILER Manual Math operators Page 8

Math operators

Operator De sc r i p t i on

+ (addi t i on) l «• l = 2
- (subtract ion) 1 - 1 = 8
* (m u l t i p l i c a t i o n) 2 * 2 = 4
/ (d i v i s i o n) 1 8 / 5 = 2

precedence of the operators:
/i *, +, -t NOT, AND, OR
(Use parentheses for other precendences)

A l l math operations are performed integer. An overflow is
i gnored:
16384 + 16384 = -32768

32767 is binary 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-32768 is binary 1800088800060080

32767 + 1 « -32768
65535 » -1

(see page 3, too)

COLOUR-COMPILER Manual Logical operators Page 9

ELSE

Please change > IF X=l AND Y=2 THEN 288
to > IF X=l THEN IF Y=2 THEN 280

Please change > IF X=l OR Y=2 THEN 288
to > IF X=l THEN 288 ELSE IF Y=2

THEN 288

2. Be care-ful with logical arguments
Please change > IF PEEK<-1984> AND 64 THEN 288
to > IF <PEEK<-1984>AND64>=64 THEN 288

In BASIC: 0 = wrong, everything else = true
COLOUR-COMPILER Operators have to be used

3. Allowed conditions:
=, >, <, <=, >=, 0
Not al1 owed:
=>, =<, X

4. No math operators in string-IFs:
* WRONG * IF A*+B*=C* THEN 200

* OK * IF A*=B* THEN 280
* OK * IF A*>B* THEN 288
* OK * IF A*<B* THEN 288
» O K * IF "HELLO"=A* THEN 288
* OK * IF A*="HELLO" THEN 288

* WRONG * IF INKEY*=rt* THEN 288
* OK * B*=INKEY*:IF A*=B* THEN 286

Same as BASIC

IF/THEN logical operators and conditions

Operator Description

IF/THEN Same as BASIC
1. AND and OR are not allowed

Please change > IF X=l AND Y=2 THEN 288
to > IF X=l THEN IF Y=2 THEN 280

COLOUR-COMPILER Manual Stringfunct ions Page 10

COLOUR-COMPILER and str i nof unc t 1 cms

Strings are stored in the following way:
A*=MHELLO"
A* now uses 5 bytes for the text and one termination byte 88H.

For each string 31 text bytes and one termination byte are
reserved, but:
If you don''t use Bf , A* can use 63 t ex t by t es.
If you don't use B* and C$, A* can use 95 tex tbytes.
If you don't use B*, C* and D*, A* can use 127 tex tbytes
and so on.

Because of this memory management, take care w h i l e adding
str i ngs:
A*=A*+B* * OK *
A*=B*+A* * WRONG m *

COLOUR-COMPILER Manual Compiling Page 11

Compilation of BASIC programs

Turn on /our Colour-Genie and press <RETURN>. Insert the tape
into your recorder, rewind i t if necessary and press PLAY.
Enter SYSTEM and press <RETURN>. The computer w i l l p r i n t a
'*?' and the b l i n k i n g cursor. Now enter C and press <RETURN>
again. When the computer has loaded the whole program, another
'*?' w i l l appear. Now enter '/' and press <RETURN)*. The screen
w i l l be cleared and the computer w i l l print:

TCG-CQLOUR-BASIC-COMPILER
COPYRIGHT <C> 1982 BY TCG

START COMPILATION WITH "NAME"
<OR PRESS "F3">

Now you can load and test your BASIC programs without affecting
the compiler. ATTENTION: The compiler w i l l leave 9 kbytes of
memory for your programs, longer programs w i l l cause an Out of
Memory Error to appear.

If your programs produces no errors w h i l e running under the
BASIC interpreter (use a DEFINT a-z at the beginning of your
program to ensure that the results are the same as the results
of the compiled version) and you are sure that you haverr't used
any prohibited commands <see page 5 ff.) you may compile i t ! !

* Is a 'BREAK' in your program? IF PEEK<-1984)=4 THEN STOP *

Save your BASIC program on tape!

In order to compile your program enter NAME and press <RETURN>
or simply press the <F3> key.
The COLOUR-COMPILER now translates your BASIC program into
machine language, this w i l l take a few seconds.
If the COLOUR-COMPILER finds any errors during c o m p i l a t i o n , i t
w i l l generate an errorrnessage and return to BASIC'S READY.
If there are no errors found, the COLOUR-COMPILER w i l l p r i n t
the following message:

(S) START COMPILED PROGRAM
(B) BACK TO BASIC
<T> SAME COMPILED PROGRAM ON TAPE

Now press the XSX key to start your program, the "'B" key to
return to BASICs READY or the 'Tx key to save the compiled
version of your program on tape. The computer w i l l ask you for
the name of your program. Enter maximal 6 characters, the first
has to be a letter, the others letters or numbers. Then the
following message appears:
*** READY TAPE ***. Insert a tape in your recorder, wind i t to
the right position and press PLAY and RECORD. Now press the
<RETURN> key. When your program has been saved, the COLOUR-
COMPILER returns to the main menue.

To load a compiled program, enter SYSTEM -(RETURN) , then enter
the corresponding filename and press <RETURN>.

COLOUR-COMPILER Manual Error-messages Page 12

No BASIC program in memory

Reasons:
The compiler has been started when there is no
BASIC program in the memory*

Syntax error in l i n e xxxxx:

Reasons:
The compiler can'* t understand a word

Examp l es:
10 PRUNT X
10 X=<Y+>2-l>>>
10 X=MHALLO"
10 X*=5*l
18 X=l +

2 : REM No 1 inefeeds! ! ! ! ! !
10 x=5*2 : REM No lowercase letters !!!!
10 X=5+l : REM Seems to be ok, but there's a

backspace hidden.
10 RUN : REM Not allowed statement

Illegal FOR/NEXT nesting in l i n e xxxxx:

Reasons:
FOR wi thout NEXT
NEXT wi thout FOR
NEXT without variable: FOR X=l TO 10:NEXT < — X!!
II legal use of STEP:

Please change > FOR X=l TO 10 STEP Z
to > FOR :'=< TO 16 STEP 5

There must be one and only one NEXT for each FOR:
Please change > 10 FOR X=l TO 10: IF X=9 THEN

NEXT X
20 NEXT X

to > 10 FOR X=l TO 10: IF X=9 THEN
20

20 NEXT X

Undefined lineno. in l i n e xxxxx:

Reasons:
A lineno. 0 in Pass 2:

10 GOTO
20 STOP

causes an 'Undefined lineno. i n l i n e 10'

If a lineno. doesn/t e x i s t , the error is l i s t e d
w i t h a wrong lineno. in pass 3:

10 GOTO 50
20 STOP

causes an 'Undefined l i n e n o . i n l i n e 4

Check a l l THENs5 ELSEs, ON GOTO* and ON GOSUBs for
missing or wrong l i nenumbers. A good way to do t h i s

COLOUR-COMPILER Manual Error-messages Page 13
\

is to renumber your program using the RENUM command

Wrong variable in l i n e xxxxx:

Reasons:
A variable named other than A-Z, Al-Zl, A2-Z2 or
A*-Z*,
Using A instead of A* or A* instead of A.

Out of memory in 1 i n e xxxxx:

Reasons:
Your BASIC program is too long.
Try the following methods to shorten i t :

1. Shorten texts <i byte per character)
2. Use more subroutines
3. Delete useless l i n e s of your program

The compiler doesn't test for any errors after c o m p i l i n g your
program. We recommend to save your program before compiling
it. Be careful in using POKE. Be sure, where you POKE!!

COLOUR-COMPILER Manual Variables Page 14

Mar i abl e

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

U

U

U

X

Y

2

A*-2*

30729

30752

30784

30816

30848

30880

30912

30944

30976

31008

31040

31072

31104

31136

31168

31200

31232

31264

31296

31328

31360

31392

31424

31456

31488

31520

A-Z

31552

31554

31556

31558

31560

31562

31564

31566

31568

31570

31572

31574

31576

31578

31580

31582

31584

31586

31588

31590

31592

31594

31596

31598

31600

316Ö2

Al-21

31616

31618

31620

31622

31624

31626

31628

31630

31632

31634

31636

31638

31640

31642

31644

31646

31648

31650

31652

31654

31656

31658

31660

31662

31664

31666

A2-22

31680

31682

31684

31686

31688

31690

31692

31694

31696

31698

31700

31702

31704

31706

31708

31710

31712

31714

31716

31718

31720

31722

31724

31726

31728

31730

COLOUR-COMPILER Manual Memory-Map Page 15

BFFFH

ÄÖÖÖH

A500H

300ÖH

7C0ÖH

7B46H

7800H

7700H

7600H

5800H

4000H

Colour-Compi l er

Shape-Table

BASIC program

Hi 1 -f sprogramme

Integer-Uariablen

Str i ng-Uar i ablen

Inpu tbu-f-f er

Stack

Compiled program

Commu n i c a t i on area

High memorx 32 K

High memory 16 K

COLOUR-COMPILER Manual Other i n-forma t i on Page 16

1. Don't add stringvariables to itself:
A*=A*+B* * OK *
A*=6*+A* * WRONG *

2. AND/OR/NOT are not allowed in IF/THEN statements

3. CLEAR, DEFINT and REM are ignored by the compiler

4. INPUT"text";var does not work. Use PRINT"text";:INPUT var
i nstead

5. INPUT A*,B* does not work. 6$ is ignored.

6. INPUT Mar* accepts a l l characters.

7. READ A* or DATA "TEST" are not allowed!

8. Variablenames are: A-Z, A1-Z1, A2-Z2 and A*-Z*. A l l numbers
are integer

9. ON ERROR GOTO is not allowed

18. USR(X) passes the value of X to the HL register. It's not
necessary to call special ROM routines to do this.

11. UARPTR is not supported. Use the given variable addresses

12. Use INT(argument) to ensure that BASIC produces the same
result as the compiled program

13. A l l numbers are stored as two bytes. The first address
contains the remainder of the d i v i s i o n by 256, the second
address contains the quotient.

14. A l l strings are stored as characters followed by a byte
88H. Each string may be 31 characters long. If you only use
A*, i t can consist of up to 831 characters! If you don't
use B*, C* and D*, A* can be up to 127 characters long!

15. The inputbuffer can contain up to 248 bytes.

16. Errors occur ing in pass 3 don't t e l l you the r i g h t l i n e n o .

17. If you don't use some string variables you store l i t t l e
machine language routines at this addresses.

18. Entering numbers bigger than 31767 produces negative
numbers: 32768 produces -32768, 65535 produces -1!!!

19. In order to input floating-point-numbers, use the following
tr i ck :
18 INPUT X,Y
If you enter 1234.56789, 1234 is assigned to * and 56789 is
assi gned to Y.

COLOUR-COMPILER Manual BASIC programs Page 17

*#**********#*#******** L E FT* (A* ,X> ***************************
After c a l l i n g this subroutine B* equals LEFT*<A*,X>

9008 REM Ml is the address of A*: 30720
9010 REM M2 is the address of B* : 30752
9020 L=LEN<A*> : IF L<X THEN B*=A*:RETURN
9030 B*=H": FOR 1=0 TO X-l : POKE M2+ I ,PEEK<M1 +1) :NEXT I: POKE
M2+I ,0:RETURN

*********************** RI 6HTXA ,X> **************************
After c a l l i n g this subroutine B* equals RIGHT*<A*,X>

9000 REM Ml and M2 see above
9010 L=LEN<A*> : IF L<X THEN B*=A*:RETURN
9020 B*="": FOR 1=0 TO L-X : POKE M2+ I ,PEEK<M1 + L-X+ I > : NEXT I:
POKE M2+I ,0:RETURN

*********************** MID$<A$,X ,Y) **************************
After c a l l i n g this subroutine B* equals MID*<A*,X,Y>

9000 REM Ml and M2 see above
9010 L=LEN<A*> : IF L<X+Y THEN B*=A*:RETURN
9020 B*="":FOR I=Y TO Y+X: POKE M2+ I -Y , PEEK<M1 + I) sNEXT I: POKE
M2+ I -Y , 0 : RETURN

STRING*O< , Y)
After c a l l i n g the subroutine A* equals STRING*<X,Y>

9000 REM X=Length, Y=ASCI I code, M=Address of A* (30728)
9010 FOR 1=0 TO X-l: POKE M+I,Y:NEXT I: POKE M+ 1,0: RETURN

*****#*##**##**** one-dimensional array ***********************
One -byte array w i t h 100 elements

9000 REM E=array index, X=value to store
9005 REM M=value found, M=start of array
9010 IF E<0 THEN RETURN ELSE IF EM 00 THEN RETURN
9020 <v>=PEEK<M+E>
9030 POKE M+E,X
9040 RETURN

***************** two-dimensi onal array ***********************
One-byte array with 20 * 20 elements

9000 REM M=start of array, X=first dimension index, Y= second
9005 REM dimension index, Z=value to store, U=value found
9010 IF X>20 THEN RETURN ELSE IF Y>20 THEN RETURN ELSE IF X<0
THEN RETURN ELSE I'F Y<0 THEN RETURN
9020 y=PEEK<M+X+Y*20>
9030 POKE M+X+Y*20,Z
9040 RETURN

********************** Cosine or Sine *****************************
This program computes 1800 * SIN(X) or 1808 * COS(X>

5 DEFINT A-Z
10 PR I NT " ANGLE " ; : I NPUTX
11 IF PEEK <-l 984 >=4 THEN STOP
15 Z=X:GOSUB 9818

COLOUR-COMPILER Manual BrtSIC programs Page 18

20 PRINT "SIN<X>*1000 =" ;X
25 X=Z:GQSUB 9005
27 PRINT "COS<X>*1000 =";X
30 GOTO 10
9005 X=X+90
9007 IF X>359 THEN X=X-360i GOTO 9007
9010 S=1:IF X>179 THEN X=X-180:S=-1
9030 IF X>89 THEN X=180-X
9040 IF X>45 THEN 9080
9050 X=174*X/10:R=X/10
9060 X=X-R*R/200*R/30+R*R/200*R/100#R/250*R/240
9070 X=X#SsRETURN
9080 X=90-X
9090 X=174*X/10:R=X/10
9100 X=1000-R*R/20+R*R/200*R/10*R/120
9110 X=X-R*R/200*R/100*R/250*R/200*R/720
9120 X=X*S:RETURN

