

LIMITED WARRANTY

RADIO SHACK Software is licensed on an "AS IS" basis, without warranty. The original
CUSTOMER'S exclusive remedy, in the event of a Software manufacturing defecl, is its repair or
replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack
Computer Center, aRadio Shack retail store, participating Radio Shack franchisee or Radio Shack
dealer along with the sales document.

Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above
limitation(s) may not apply to CUSTOMER.

RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY
OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "SOFTWARE" LICENSED OR
FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so
the above Iimitation(s) or exclusion(s) may not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER anon-exclusive, paid-up license to use the RADIO SHACK
Software on one computer, subject to the following provisions:
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to

the Software.
B. Tille to the medium on which the Software is recorded (cassette and/or diskette) or stored

(ROM) is transferred to CUSTOMER, but not title to the Software.
C. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use

on one computer and as is specifically provided in this Software License. Customer is
expressly prohibited from disassembling the Software.

D. CUSTOMER is permitted to make additional copies of the Software only for backup or archival
purposes or if additional copies are required in the operation of one computer with the
Software, but only to the extent the Software allows a backup copy to be made.

E. All copyright notices shall be retained on all copies of the Software.

The warranties granted herein give the original CUSTOMER specific legal rights, and the
original CUSTOMER may have other rights which vary from state to state.

Robot Battle
Adventures in Programming

!ladle lIIaeK
A DIVISION OF TANDY CORPORATION

FORT WORTH. TEXAS 76102

Robot Battle Program
@1981 The Image Producers, Inc.

All Rights Reserved
Licensed to Tandy Corporation

This applications software for the TRS-80 Color microcom
puter is retained in a read-only memory (ROM) format. All
porllons of this software, whether in the ROM format or other
source code format, and the ROM circuitry, are copyrighted
and are the proprietary and trade secret infonmation of Tandy
Corporation andlor its licensor. Use, reproduction or publica
tion of any portion of this material without prior written authcri
zation by Tandy Corporalion is strictly prohibited. The license
for using this software is printed on the inside front coveroflhls
manual.

Robet Battle Manual
@1982The Image Producers, Inc.

All Rights Reserved
Licensed to Tandy Corporation

Reproduction or use, without express written permission from
Tandy Corporation, of any portion of this manual is prohibited.
While reasonable eHorts have been taken to assure its accu
racy, Tandy Corporation assumes no liability resulling from
any errors or omissions in this manual, or from the use of the
information contained herein.

10 9 8 7 6 5 4 32 1

Thble of Contents

Introduction. .. 1
Required Equipment .. 1
Overview 1

Part I-Guided Tour of Robot Land 3
Starting Out. .. 3
Sample Program #1-Motion 4
Sample Program #2-Direction &

Weapon Control. .. 6
Ifthe Program Won't Compile .. 8
Victorious Robot .. 8
Cost of Living in Robot Land. .. 8
Sample Program #3-Conditionals 10
Sample Program #4-CALL, GOTO &

Labels 11

Part II-More About Robots and Program Control 15
Items on the Menu 15

Edit 15
Save 16
Load 17

Comments 17
Naming the Robots 18
Scan Sensors 18
Firing Ranges 19

Lasers ',' 19
Missiles 20

Click, Bang, Boom and Beep 20
Printing Your Programs 20

Part III-Reference Section 21
Editor Line Cornmanqs .•... : : ...•... : : : ..•..•••. 21
Glossary of Robot Commands 22
Robot Programming Terminology 24

Part IV-Inhabitants of Robot Land 27

Introduction

You are entering a world where you have control over all events. Nothing occurs
without your command. This is Robot Land and you are Person in Charge. Welcome
to computer programming!

Required Equipment

• A Radio Shack TRS-80 Color Computer with at least 16K and connecting cable.

• A standw'd TV.

A Color Robot Battle Program PakT
".

A tape recorder and blank cassette, ifyou want to save your programs (optional).

• A compatible printer, such as the TRS-80 Line Printer VII or VIII, and connecting
cables, if you want a printout of your programs (optional). Warning: Do not turn
on you.r printel' until you are ready to print. Never have your printer on when
starting the Color Robot Battle program.

Note: In this manual, the tape recorder referred to is the Realisti~CTR-80A (or
equivalent), available at your local Radio Shack store.

Overview

Color Robot Battle is an enjoyable introduction to the concepts and procedures of
programming. The fun of video games and the thrill of discovery combine to make
this program unique and rewarding.

'!Wo robots are at your command. Thll them how and where to move, how to react to
situations around them, when to fIre lasers and missiles, when to stay and fight and
when to run! You can even program them to dance!

The preferred approach to this program would be for two people to program one
robot each, then challenge the other person's program in battle. Enjoy the challenges
of computer programming while playing an exciting game with a friend, or by
yourself.

Program offensive and defensive robots. Improve on your progr8JDS as you learn.
However you play, with Color Robot Battle you'll finish a winner!

Introduction

1

Part I-Guided Tour of Robot Land

Guided Tour of Robot Land

You are embarking on a tour of Robot Land, where the language will be taught
along the way. Follow tllis guide in sequence, and you will be traveling the Land and
speaking fluent Robot in no time. Remember to stay on the tour's path; you don't
want to get lost along the way!

Starting Out

Th begin Color Robot Battle, insert the Program Pak and turn on your 'fRS-SO Color
Computer. (Refer to your 'fRS-80 Color Computer Operation Manual for detailed
information.) The opening screen appears:

COLOR ROBOT BATILE

COPYRIGHT 1981

THE IMAGE PRODUCERS, INC.

PRESS <ENTER> TO BEGIN

PRESS 0 FOR DEMO

Normal entry into the program is achieved by pressing I ENTER I .Th see a
preprogrammed confrontation between two robots, type [Q]. Then, to break out of
demo mode, press I BREAK I .The menu for the two robots (Alpha and Omega) will
appear. Everything you see will be explained in tile cowoe oflliis manual. Th return
to ihe opening screen, press the IWset button (located at the rear right of the Color
Computer) and proceed as described below.

Press I ENTIR I to see:

LEFT RIGHT
EMPTY EMPTY

NEW INLI lliRJ
EDIT EL ER
SAVE SL SR
LOAD !JI] lliJ
COMPILE CL CR
BATILE B

3

4

Guided Tour of Robot Land (continued)

This menu shows the options Oell. column of terms) from which to choose as you set
up your battle between the right and left robot. You can also later name the robots;
names will be displayed where the words EMPTY appelll' now. (How to name the
robots will be explained in the section "Naming the IWbots" in Part D.)

The following sample programs have been designed to illustrate various aspects of
the robots' capabilities.

Sample Program # I-Motion

Begin writing your first program by typing ffillIJ, which informs Lhe computer that
you are about to write a new list of commands for the len robot. A green screen with
a black bar across the center appears. This is Robot Battle's editor, where you enter
all the commands your robot is to execute. 'lYpe the following commands, exactly as
they appeal' here (you may use the left arrOW key to backspace and type over any
errors):

The left robot is instructed in this sequence to go forward 8 steps, right 8 steps, back
8 steps, left 8 steps, then halt for 2 counts, Or "clicks," as they are known in Robot
Land. Each individual command is separated from the others with a colon (:). A line
of commands can contain up to 32 characters (including spaces). See the Glossary of
IWbot Commands for mare information on command abbreviations.

An automatic "loop" is built into the program. This means that as soon as the robot
executes the last command, it goes back to the first command and repeats the
sequence. Therefore, once the len robot stands still for two "clicks," it will go forward
8 steps, then right 8 steps, and so on,

Now enter some commands for the right robot. First press the I BREAK I key to exit
the edit mode for the left robot; the previous command sequence is enough for the
first program. You should now see t.he menu once again. The screen now shows tlNo
Name" for the left robot. Type [ID [R] to indicate that you want to compose a new list
of commands for the right rahat. This returns you to the editing line (black line on
green screen),

'IYPe the following command sequence, exactly as it appelll'S here:

Guided Tour of Robot Land (continued)

Press I BREAK I again to go to the menu. The screen now shows "No Name" for both
robots. Now type [£] [II to compile the program for the left robot, then type [£] lID to
compile the program for the right robot. The term "compile" means to translate the
source program (the command sequence you just wrote) into the object code
Oanguage that the robots understand). In Robot Land, compiling must always be
done before a program can be run; otherwise, the robots will not know what to do
with your source programs.

Next, type the letter [[] to go to the battlefield. Your robots' are not actually
programmed to battle each other yet, but typing [[] takes you to the battlefield
where the robots stand.

Action will not begin until one of the uumeric keys along the top of the keyboard is
pressed. Pressing the number [I] causes the robots to move fastest; pressing 00
makes them move very slowly. The slow speeds are good for seeing every step
enacted as pmgrammed; you may also frod "bugs" (enors in the program) that
should be ironed out. Ifyou press lID (zero) repeatedly, you can pace through the
action step by step-and not miss a trick! Pick a speed and watch the robots mover

Your robots should now be mm:ching on square tracks, with the left one moving
clockwise and the right one moving counterclockwise. Your point of view is
"overhead," looking at the tops of the robots. Each robot halts for two clicks upon
completion of each square. The volume on yo r TV or monitor should be adjusted so
you can hear the sound ellects; sound can clue you in to details you may otherwise
miss.

The direction a robot is facing is indicated by its firearm. If the weapon is pointing
to the right, for example, the robot is facing right. This is an important fact to keep
in mind because when you command the robot to turn left, it will turn to the left in
relation to its firearm, /lot YOUR left (as you view the screen). The significance of
keeping directions straight in your mind will become more clear as you become more
involved with programming.

After watching the robots and experimenting with various speeds, press I BREAK I to
return to the menu.

5

Guided Tour of Robot Land (continued)

Sample Program #2
Direction & Weapon Control

'lYpe [jj] [jJ to compose a new program for the left robot. You should now be back in
the edito!: This new program will replace the one you entered before.

1YJle:
IT][TI [] 00 [jJ

This tells the left robot to turn once and Ere a laser. Remember, the program will
loop (repeat).

Press I BREAK I , then type [jj] [R] to enter a new program for the right robot. Once
you are in the editol; type the following (press I ENTER I to start each new line). You
can correct typing errors by using the rn, m, EJ and El keys to move the cursO!· to
the area you need to change. Then enter the information correctly.

[Q@[]00[M]

[Q]@][]00[M]

[Q]1]][]00[M]

The "D" commands indicate a speciEc direction for the robots to face. There are eight
directions, or octants, in all. (Octant is defined in the Robot Programming
Terminology section.) The octant facing straighl up is 0 (zero). The other octants are
numbered one through seven, going clockwise (see diagram on the next page). When
you tell a robot to point in direction 2, for example, it will find that octant by taking
the shortest route there. If the robot is facing D4 when it is told to go to D2, it will
"back up" by way of D3 to reach its goal, rather than going clockwise all the way
around the octants.

After the last command is executed, the program will loop back to the beginning.

Guided Tour of Robot Land (continued)

0

7
\ I
\ I 1\ I

\ I
\ I
\ I
\ I

......_--........... \ I -I --" \ I-..............
'"

6 2

......................

I \ "
I \ "

I \ "
I \

I \
I \

I \

5
I \

3I \
I \

4

Figllre 1. In this example, the robot is facing straight IIp (octant zero). Ifyoll
programmed it to tllrn two octants clochwise (T2), it would tllrn twice and stop at
octant 2. If, while facing zero, yOll programmed T-2, the robot wOllld turn two octants
cOllnterclockwise and stop at octant 6. If you programmed the robot to face a specific
dl:rection (D2, for e."f:ample), it would turn to octa.nt 2 by way of the shortest route.

The "X" commands, separated from the "D" commands in the preceding program
with a colon, tell the rohot to fire (shoot). In this particular program, the right robot
will fire missiles (XM). Remember, a robot can only fire effective weapons if the
firearm is facing the target.

Now that both robots have been programmed, press I BREAK I to return to the menu.
Compile the programs by typing [£] [h] and then [£] [ID; then type 00 to go to the
battlefield. If the program returns you to the edit line instead of the battlefield, see
the section called "If the Program Won't Compile," which follows.

Choose the speed at which you would like to view the action. Slower speeds (higher
numbers) are best to demonstrate what is happening. You can always switch to a
faster speed after observing a few moments.

Keep in mind what your program directions were. You car review the programc; you
entered by re-reading the previous pages in this manual. The left robot should be
making a one octant clockwise turn, then firing a laser and repeating this sequence.
Notice the changes in direction as indicated by the position of the firearm.

7

8

Guided 'Ibur of Robot Land (continued)

Meanwhile, the right robot is turning to each programmed direction, firing a missile
and repeating the sequence.

Every time the right robot fires a missile, it "rests" a few counts before tuming and
firing another missile. It takes a moment for a robot to regain its strength after it
fires a missile. Lasers don't take up much energy, however. This is more noticable on
slow speeds (ancl with more volume).

If the Program Won't Compile

If for any reason the computer does llut understand what you are attempting to clo, it
can not compile your program. This almost oertainly means an error has occurred in
the writing ofthe program. In this event, the editor will appear, with the green
cursor (position indicator) showing you where the problem is-or at least begins!

Ifyour prol(l"am does not compile, check your work C8l·efu11y. Make sure commands
are stated in a way the computer understands. For example, if you typed "FM" for
Fire Missile rather than 00 1M! (the code for Fire Missile), the computer will not be
able to execute a command it does not recognize. The more involved your programs
become, the greater the possibility of error becomes. Don't worry! For every problem
you may encounter, there is a solution!

Victorious Robot

Ifyou let the programs run for a length of time, one robot, '11 eventually triumph
over the otLer. The robot with energy to spare is the winner. The energy leve are
represented by the two lines on the bottom of the screen during a battle. The color of
each energy level line matches the color of the corresponding robot. Energy levels
are affected in various ways, as described in the following section.

Cost of Living in Robot Land

At the beginning of an encounter on the battlefield, each robot has 62 units of
energy. Both energy levels on the bottom of the screen represent full energy capacity.
The number of units is not printed anywhere; they are preset to 62 units at the start
of any "battle."

Guided Tour of Robot Land (continued)

Fig"re 2. Robots in battle with varying energy levels.

Many activities during battle cost the robots a certain amount of energy For
example, running into a wall depletes one third of a robot energy unit. The "cost of
living," recorded in energy units (or fractions of units), is as follows:

When a Robot:
[s hit by a missile
[s hi t by a laser
Runs into a wall
Runs into a robot.
Shoots a missile
Shoots a laser

Cost in Energy Units is:
2.00
0.20
0.33
0.40
0.33
0.10

Clearly, getting hit by a missile is the single most costly event in Robot Land. Notice
how the energy levels decrease as the battle progresses.

Ultimately, one robot runs out of energy altogether. The screen changes color; the
winning robot then springs into a lIvictory dance," firing lasers in all directions and
spinning in circles. This celebration continues until the I BREAK I key is pressed.

9

10

Guided Thur of Robot Land (continued)

Sample Program #3-Conditionals

The tenn ·conditional" means that if a robot sees or senses a specified object, it does
something in response. For example, you can issue a command stating that if a robot
senses a wall nearby, it should make a turn to avoid bumping into the wall.

Conditional commands are preceded by an equal sign (=). At the menu (press
I BREAK I to stop the last program if you haven't already done so), type ffi] III to
program the left robot. Once in the editor, type in the follo,;';ng program exactly,
pressing I ENTER I after each line:

EJI1JDITlITI

This program instructs the left robot to fire a missile if it sees a robot and turn two
octants clockwise if it sees a wBJI. The third command is interesting. It is a random
command, indicated by the question mark. The computer executes a random
command approximately half the times it finds one. Therefore, the EJ I1J 0 illITI
command means that if the robot "feels like it," it can turn one octant clockwise.
Random commands add an element of surprise on the battlefield. Any action the
robots can perfonn can be programmed to occur randomly.

The last command in the above list is a simple one you probably recognize: move
forward l! steps. This is also the only command in this program that is a "sure
thing." The others depend on certain factors to be present before they can be carried
out. When there are no walls or robots in front of the left robot, it will continue to
march ahead 8 steps, with, of course, an occasional random turn.

Here is the corresponding program for the right robot (remember to press IBREAK I
to go to the menu, then type ffi] [RJ for a new program for the right robot). 'lYpe the
following exactly, pressing I ENTER I at the end of each line: .

EJIMlDOOIIl

EJ lID 0 ill [::mJ
EJIIDDOOIMl

(f][I]

Guided '!bur of Robot Land (continued)

This programs the right robot to fire a laser when it sees a missile (lasers can
destroy missiles, but the reverse is not true); turn counterclockwise two octants
when it sees a wall (colmterclockwise turns are indicated by a T followed by a
negative number; in this case, -2); fire a missile when it sees the other robot, and
move forward six steps.

Press I BREAK I to go to the menu, then compile both robot programs. Ifyou have
trouble compiling the programs, check each command carefully. Then type [ID and
select a speed to see the results.

Sample Program #4-CALL, GOTO & Labels

CALL and GOTO are commands used to call up or go to a particular part of a
program. These commands allow control and versatility in your programming.

CALL and GOTO commands must have something to call or go to, SO labels are used.
A line of commands preceded by a label can be thought of as a program within the
larger program, or a subroutine (offshoot of the main routine).

The following program should help illustrate these terms. First, go to the editor for
the left robot. You should be able to find your way there now that you have done it a
few times. Enter this program exactly as it i. written here, pressing I ENTER I at the
end of each line:

[jjJ[Q][IDGDEJ[jjJDoomD[§][jjJ[Q][ID

~[A]mGDEJ~D[!]rnD[§]~[A]m

~[!][A][jjJ[!]GD~[jjJ[Q][IDD~~[A]mDm[IDDEJ~D[!]rn

[§]~[!][A][jjJ[!]

Now, go to the editor for the right robot and type in this routine, pressing I ENTER I
after each line:

[jjJ[Q][IDGDEJ[jjJDOOIMl

~[A]mGDEJ~D[!]G[IJ

~[!][A][jjJ[!]GD~[jjJ[Q][IDD~~mmDm[IDDEJ~D[!]rn

[§][ID[!][A][jjJ[!]

11

12

Guided Tour of Robot Land (continued)

Always remember to put a 2] symbol immediately after any label in your
programs. Labels must appear at the beginning of a line, and cannot excede six
characters in length. In these last two programs, each line begins with a label, and
each labeled line is "called" by another line in the program.

The main routines (the ones with th" START> labels) '!Ire the same for both robots.
The program differences lie in the subroutines that are called by the main routines.

Each robot's main routine says first to "call robot" (CROB). The program then looks
for the ROB label and proceeds to carry out the commands contained in that
subroutine. In the case of the left robot's current program, the commands in the ROB
subroutine say to lire a laser if the other robot is in view, and to keep doing so until
the other robot is out of range.

Once the robot has executed tbe ROB commands, it returns to the main program
routine (START» which says to next see (or call) the subroutine WAL. The line of
commands labeled WAL tells the robot to turn one octant clockwise if there is a wall
in its way. The robot will continue to turn until its path is clear of walls.

After the WAL routine has been accomplished, the robot is programmed to go
forward eight steps, (occasionally) make a clockwise tum, and ultimately return to
START.

L----*'"---------jGSTART1-~--L4--'

Figure 3. Flow chart 0{ currellt routine for the left robot.

These labels can be anything you find appropriate to indicate the routine that
follows. WAL and ROB are just two simple examples of logical labeling. One
steadfast rule, however, is that if you use labels, yow' main routine must always be
labeled START>. The computer always hunts for this particular label to get the
progJ'am started and keep it looping. (This only applies to programs using labels;
you have already written programs that loop successfully without any labels.) More
label examples are provided in the section called Robot Programming Terminology,
under "label."

Guided Thur of Robot Land (continued)

The order in which these labeled subroutines appeal' mak,," nu ililTerence as to the
order in which they will be executed. As you can see in the example, the main
routine is not at the top of the program; the computer knows to start at the START>
line regardless of where it appem"S. Similm·ly, when the line labeled START is being
executed, the computer will find the routines labeled ROB and WAL regardless of
where they appear.

The sequence of labeled routines is totally up to you. You may, for example, decide
first that you want a robot to nre a laser at the other robot if it's in view; therefore,
that is the nrst thing you happen to write into the editor. As long as your call labels
match the labels they are calling exactly, the pl'Ogram will flow in its proper
sequence. (For example, to call the ROB routine, you must write [£] [j!]@] 00, not
CROBOT.) A program with mismatched labels will not compile.

The difference between CALL commands and GOTO commands may not seem
obvious at fu"St glance. CALL will call up a labeled routine, execute it, and return to
the line from which it originally came to nnd the next command to activate. In the
main routines for the two current programs, the mbot is instructed to CALL the ROB
routine, and return to finish the remainder of the main routine once the ROB
commands have been cm·ried out.

Now look at the ROB subroutine for the left robot; it ends with GROB. This means
continue to execute the ROB line until no longer possible (when the other robot is no
longer within range to fire at with lasers). Ifyou put a GOTO directive in the middle
of a line of commands, the program might never return to fwish the rest of the line.
CALL commands remind the program (in our case, the robot) where it came from
and where it should return once it has executed other routines.

Be careful when using CALL, GOIO or conditionals; otherwise, you may find your
robots stuc.k in a loop. Refer, for example, to the WAL subroutine in the last sample
program for the left robot. If that line did not include the =W conditional, the robot
would go to the WAL> label, make one clockwise turn and repeat endlessly. As it is,
the the robot will turn only if a wall is in its way. Then it returns to the main
routin" (START» to carry out th" next command. So, if you notice your robot
repeating the same limited moves, check these three important factors!

This concludes your basic guided tour through Robot Land. You now have an
understanding of basic programming terms and how they interact to create a
"living" mbot. The next section provides further details that did not directly apply to
the sample programs provided in these sections.

By the way-ifyour curiosity has caused you to venture into the program editor for
the demo robots, you may have recognized Sample Program #4 as one and the same!

13

Part II-More About Robots and Program Control

More About Robots and Program Control

Now that you have "toured" through the basic fundamentals of robot programming,
you al'e ready to take on a few more details. The information included here will
allow you to expand on what you already know; you may yet become a programming
wizard!

Items on the Menu

Take another look at the program menu. Notice how many of the choices are in
inverse video Oight letters in black boxes). When an item on the menu is in inverse
characters, that function is an available choice to make at that time. For example,
the B will not appear inversed until the progrmns have been compiled because you
cannot go to battle without first having problem-free programs to execute.
(Remember, the program will not compile if there al'" errors in command or label
usage.)

NL and NR, as explained in the sample programs, take you to the editor to write
new programs for the left and right robots.

Edit

Beneath NL and NR on the menu are EL and ER. Type these letters to return to an
existing program to make changes (edits). Once you've written a program and have
seen it in action, you will probably see things on the screen that were unexpected
during programming. This is when you'll want to add, remove or otherwise alter
portions ofyour program.

Changing and adding to programs is the most valuable learning experience you can
get. This is what Color Robot Battle is all about! A complete account of all you need
to know about editing is contained in the section, "Editor Line Commands."

15

16

More About Robots and Program Control (continued)

Save

The next option on the menu is Save. Only one program for each robot can be in
memory at a time, which would be the most recently written program. No robot
program will be in memory if the computer has been turned off or ifother programs
have been run since your last robot battle.

Tbe Save feature is a great convenience. Save programs you consider to be especially
effective, or tart saving programs right away to keep track of your progress as you
become more adept at programming.

When you are recording a program onto tape, be sW'e the tape in the cassette is past
the "'eader" tape (different colored cellophane at the beginning and end of each
cassette). Leader tape does not accept a recording signal; only the dark (magnetic)
tape is effective. Set the counter to 0. The fU'St program you record can start at
counter number 0. Subsequently saved programs should be started at counter
numbers past the end of the last program.

1b save a program currently in the Robot Battle editol; first make sure your cassette
recorder is properly connected to the Color Computer. (See your TRS-80 Color
Computer Operation Manual for detailed instructions.) '!Ype [ID [I] to save your left
robot's program or [ID @ to save the right robot's program. The screen will show:

INSERT SOURCE TAPE
REWIND TAPE
PRESS PLAY AND RECORD
PRESS <ENTER>

After you have followed these instructions, the program will be stored on tape and
the screen \vill retul'll to the menu. You will want to keep track of where programs
start and end on the cassette for future reference.

More About Robots and Program Control (continued)

Load
'Ib run battles that you have saved onto cassette, activate the load feature. The
loading process always overrides any other progJ'am in the editor; you may want to
save the existing program before loading another.

For your own convenience, keep track of the counter number where each program
has been saved. Check the counter on the recorder and jot down the program and its
location for future reference. Build a portfolio of programs!

'lYpe [iJ 111 to load the left robot program into the computer; [iJ [R] to load the right
robot. The screen will show:

INSERT SOURCE TAPE
REWIND TAPE
PRESS PLAY
PRESS <ENTER>

Fast forwslu the tape to the counter number of the program you wont to load.
Follow the rest of the screen instructions; the program will be loaded. The screen
will retum to the menu when the loading is done.

Comments

Words or statements can be included in command lines that will not he acknow
ledged by the computer as someth.ing to he carried out. Comments are usually
prompts to remind you what a program, or portion thereof (such as labels) is about.

'Ib write a comment in a program, type an asterisk (EI> either at the end of a
command line or on a line of its own, followed by the comment (a key word or
phrase). The computer interprets anything written after an asterisk as a note for
yon, and will not attempt to read it or deal with it in any way. (Do not put comments
in m.id-command line because any commands following a comment on a line will he
ignored, with the exception of robot names, as described next.)

17

18

More About Robots and Progl'am Control (continued)

Naming the Robots

Names are handled similarly to comments. They are words typed into the editor, but
are not commands for the robots to execute.

When you enter the editor, type an asterisk (0) before anything else. Immediately
following the asterisk, type the namc of your robot, such as:

The rule here is: to name a robot, enter the desired name as you would enter a
comment, but it must be the first eight characters (or less) on the first line of the
program for that robot. The name will then appear at the top of the menu where
"empty" appears otherwise. In the event that nwre than eight characters follow an
asterisk on the first line, only the first eight will appear as the name. Ifyou have an
existing program which has not been named, you can name it by putting the
program (in the editor) on the screen, creating a new first line with the @ command
(see Editor Line Commands section in this manual) and typing an asterisk followed
by the name.

Scan Sensors

All robot sensing, scanning and activity occurs in an octagonal pattern: robots turn
in octant segments, face an octant's direction, walk down octant avenues, and fire
lasers and missiles down octant paths.

Scanning is the only talent a robot performs in all directions at once. Scanning is a
conditional command similar to those mentioned in the Conditionals section of Part
I, page 10 of this manual (if there is a robot, fire a missile, etc.). The nature ofthe
scan conditional command (5) is much more general, however.

An 5 in a line of commands tells the robot to activate its sensors and see if anything
is there, in all directions within range. If it fmds something, the program may then
proceed to have the robot methodically comb through the conditionals:

=5 Is something there? Sensors decide yes or no (= represents true; # l'epresents
false). If yes (true), proceed with a sequence such as:

=R If it's a robot ... (insert next command)

~W If it's a wall ... (insert next command)

#R If it's not a robot. .. (what would you like it to do?) and so on.

More About Robots and Program Control (continued)

In other words, the S conditional is a qualifier or signal for the program to proceed
to determine WHAT object is in sensory range, and then react to that object (or those
objects) in whatever manner you have indicated in your program (fire a laser, turn
and run, etc.).

Firing Ranges

Like all other robot activities, octants provide the guidelines for ranges in which
ammunition may be fired.

Lasers

When a robot is programmed to fire a laser (XL) at some target within sensor range,
the ammunition fires down an octant, but will veer off its straight-line course to
strike its target as close to center as possible. Veering is limited, however; it can
only move halfway between its original octant and the octant beside it.

When program processing encounters XL in the command sequence, it will
automatically deal with XL in accordance with a predetermined priority. Upon
reading any XL command (such as =R:XL), the program first asks, "Is a missile in
this octant?" If a missile is in that octant range, a laser will be lirarl at the missile.
before dealing with the robot that is also in the octant. This built-in self defense
mechanism deals with the most immediate threat (a missile heading straight for the
robot) before it executes = R:XL. Even though the robot is programmed to fire a laser
at the other robot (if it's in range), the laser will deal with the most immediate
problem first, which would be to get the missile before the missile gets it. It will then
deal with any robots within its octant range.

There is one potential problem with the automatic se8l"Ch for a missile in 8ll octant.
You may at some point command a missile to be fired, followed by a laser. What may
happen in this event is that your missile will be blasted by your ow~ laser! Be
cautious!

Laser fire is instantaneous in its connection with its target. A missile is slower and
more limited in its applications, as described in the following section.

19

20

More About Robots and Program Control (continued)

Missiles

Missiles do not have the capacity to intercept lasers or other missiles. A missile is
slower to reach its target than a laser. This improves the chance for the targeted
robot to save itself by responding with a laser, ifit had been programmed =M:XL.
Moreover, a robot can aetnally step out of the way of a missile, given enough space
between mbots at the time the misaile is fIred.

Click, Bang, Boom and Beep

The best way to familiarize yourself with the sounds these robots make is to
program various activities, turn up the volume and press a high number on the
keyboard to see and hear each command executed individually The sound effects in
Color Robot Battle coordinate \vith the action to make each movement clear to the
programmer-and of course more fun to watcb!

Robot activities are accompanied by the following sounds:

For each step, you hear "Chcka"

When a robot turns, you hear ''1l:h''

When a robot halts "Click"

Scanning sounds like•....... "Blip-blip"

Firing a laser fcneep"

Firing a missile "Bang"

Robot collisions or ammunition hit "Boom"

A good battle can generate a lot of commotion!

Printing Your Programs

'Ib obtain a printed copy of a program, you must have a compatible printel' connected
to your TRS-80 Color Computer. When the program to be printed is displayed on the
screen, turn on your printer. (Do not have it on until you are ready to use it.) Type
G (fJ (by simultaneously pressing the I SHIFT I , G and (fJ keys) on the keyboard.
When printing is complete, turn the printel' off. This is necessary since some
printers respond to the robot sounds by printing meaninglesa chal'Bcters.

Part III-Reference Section

Reference Section

Editor Line Commands

These are the commands to use when you are in tbe editor (creating or changing
robot programs),

B or El The!1 keys move the cursor right or left on the line without
deleting,

I SHIFT I EI or El The I SHIFT I key pressed simultaneously with the right or left
arrow moves the cursor to the right or left end of a line,

III or rn Press the rn or ill to move text up 0" down one line.

I SHIFT I rn or rn The I SHIFT I key prCB8Cd simultaneously with III or rn moves
text up or down 1/2 page,

I CLEAR I The I CLEAR I key deletes all characters frem the current cursor
position to the end of the line.

I SHIFT I & I CLEAR I These keys, pressed simultaneously, delete the entire line upon
which the cursor is positioned,

I ENTER I Press I ENTER I to move to the next line and to create one if
none exists.

Press Il2!I to create a blank line above the current line, indicated
by the cursor position,

I BREAK I Press I BREAK I to exit the editor.

This combination of keys (t SHIFT I ,G, IE]) will start a
printout of the program displayed on the screen. 'Ib print your
programs onto paper, a compatible printer must be turned on
and properly connected to yom' computer before you press
B[EJ.

21

Reference Section (continued)

Glossary of Robot Commands

Commands on the same line must be separated by a colon.
Example-F2: R8.

22

F(n)

B(n)

L(n)

R(n)

H(n)

T(n)

T(-n)

0(0-7)

C

G

START>

XM

XL

=

Forward n steps (Robots may take from one to eight steps.).
Example-F2.

Backward n steps. Example-B2.

Len n steps. Example-L3.

Right n steps. Example-R8.

Halt n "clicks" (robot time units). Example-H8.

'furn clockwise n octants. Example-T2.

1\lrn counterclockwise n octants. Example-T-3.

Face direction (octant) \\ through 7. Example-D6.

Call a line. Example-CLINE.

Go to a line. Example-GLINE.

Unique label which always marks the beginning point of a
program using labels.

Fire missile.

Fire laser.

'!'rue

=7 or #7

5

=5

R

=R

#R

M

=M

#M

w

=w

#w

= (conditional)

(conditional)

Reference Section (continued)

Not true

Randomly evaluates a condition to be true (=7) or not true (#7)
and carries out the command approximately half of the time.
Neither the programmer nor the opponent knows when the
condition will be true or false.

SensOl)' mechanism scans in all directions.

Is anything out there?

Robot

If there is a robot in this octant ...

If there is not a robot in this octant ...

Missile

If there is a missile in this octant ...

If there is not a missile in this octant ...

Wall

If there is a wall within sensory range ...

If there is not a wall within sensory range ...

Continue processing this line if the conditional is true.

Continue processing this line if the conditional is false.

23

Reference Section (continued)

Robot Programming Terminology

24

Call

Comment

Compile

Conditional

Editor

Coto

Inverse Video

This directs the flow of events to a labeled subroutine (offshoot)
of the main program. Once the subroutine is executed, the
computer looks back to the spot where the call command
occurred and proceeds to finish executing that command line. It
is designated by C (subroutine label).

Word or phrase wruch is not related to the command sequence
of the progrant; usually a key word describing a routine or
portion t.hereof. It is designated by a • (comment).

Computer translation of information you write (source
program) into information the computer understands and can
work with (object code). It is designated by CL (Compile Left
Robot program) or CR (Compile Right Robot program).

Ifa certain condition is determined to be true, a particular
(programmed) response will ensue. For example, = M:XL states
that if a robot sees a missile in the octant it is currently
viewing, it will fire a laser (down that octant). It is designated
by =.

The Color Robot Battle editor is where communication between
you and your robots occurs. All commands are first typed into
the editor. Then you compile them to bring a program "to life ."

Instructs processing to go to a particular label and execute the
following command line. Goto, unlike Call, does not return to
the point in the program where Goto occured; the program
carries on from the last command on the line it "went to." (See
now chart on page 12.) It is designated by G (label).

Characters or images on a TV or monitor display that are light
on a dark background; reversed from the usual dark characters
on a light background.

Label

Loop

Menu

Object Code

Octants

Program

Routine

Source Program

Reference Section (continued)

Labels mark or name a subroutine within the program. The
Call and Goto directives must bave labels to search for in
order to execute that line of the program. Labels can be
anything you want them to be, up to a maximum of six
characters. Here is a sample list of labels to help you
formulate ideas:

LOOK> SCAN> SHOOT> WALL> TURN>

KILL> RUN> LOOP> UP> DOWN>

Labels don't have to be real words. However, it's less confusing
if your labels do actually indicate something, such as the type
of action programmed on the labeled line. If you do venture
into "creative" labeling, you have the option of using comments
to remind you how a line ofcommands performs.

A program's process of returning to a previously executed line
of commands and repeating the command sequence
automatically.

List of items from which to cboose.

The result of your "English" robot program translated into a
language (code) that tbe computer understands and follows.

Tbe pattern in which the robots move, sense and shoot,
resembling a pie cut in eighths (see diagram on page 7 l.

A set of instructions (commands) which dictate action.

Program

Line or lines of commands written in "English" robot language.
The computer can translate them into an object code and
execute the program.

25

Part IV-Inhabitants of Robot Land

Inhabitants of Robot Land

You've toured Robot Land, learned some !Wbot language and played Robot games.
It's only fair that you have an opportunity to meet more Robots! Here is the
'welcoming committee" of !Wbot Land, pleased to perform for your amusement and
entertsinment. They can do more than shoot lasers and missiles, as you'll soon see!

Here's a fun challenge: below are some robot characters anxiously awaiting the
chance to 'come alive.' Read the following stories, then see if you can write a
program for each story. Make the robots chase each other, play hide and seek, trip
the Ught fantastic-whatever your imagination creates!

These suggested programs are "just for fun." Perhaps they'll give you, a potential
programming champion, ideas for bigger and better robot programs. Discover more
about robot behavior and how you can better control it.

Program your I'obots to aet like the characters in the stories. Each robot performs a
simple action, using D. few commands. Remember, you must give these robots
'brains." 'Ib become a super programmer, all an ordinary person needs is a Color
Computer and a basic knowledge of Robot Language.

You have the power to make these robots do almost anything, except perhaps step
out of the screen into the three-dimensional world (but one day, who knows ... ?).

At the Rink ...

The two robots are enjoying a leisurely skating party. They are great at figure
eights, together as a pair or skating independently, weaving in and out ofeach
other's path. Are they coordinated enough to avoid bumping into each other?

The Chase ...

The Red robot is quietly minding its own business when its sharp scanners sense an
intruder. The Blue robot is sneaky, but Red escapes in the nick of time. The chase
begins! Will Blue get Red?

Can you write a program to start a fast and frantic chase around the screen? You1l
need a few commands to get those robots zipping around. Ready, ""I., GO!

27

28

Inhabitants of Robot Land (continued)

Hide and Seek .. .

The robots' "eyes and ears" are their super-sensors. Hide and seek robot-style is
more exciting-wheuyou write the program! Create a new robot game and watch
their adventures as Blue tries to stay clear ofHed's scan range. If Blue gets caught,
he's "it!" and the game begins anew.

Imagine the robots playing hide and seek; then, see ifyou can make your ideas work
in a program. You'll need to teU your robots to use their scanners and make plenty of
quick turns. Charge up those sensors and don't bump into any walls!

Trip the Light Fantastic in Robot Land ...

'fransform an ordinary TV OJ' monitor into a ballroom and - voila - two ordinary
robots become dancing dynamos! Can they dance? These robots can swing, tango,
disco ... they can even do the Bunny Hop! Put on your favorite record and get on
down to the Robot Hop!

Clowning Around . ..

After a heavy battle, robots like to relax and horse arolmd a bit. Red and Blue are
darting around, turning cartwheels and blasting a few lasers for fun. Make them try
to outdo each other in crazy antics!

How funny can your robots be? What hijinks can you program for them to perform?
'fry writing a program to turn those robots into real zanies. Robots are rough and
ready in battle, but your program will show that they're really just a couple of
clowns!

-HAPPY PROGRAMMING-

RADIO SHACK. A DIVISION OFTANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA

280-316 VICTORIA ROAO
RYDALMERE. N.S.W. 2116

BELGIUM

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U.K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	Front Cover
	Limited Warranty
	Radio Shack Software License
	Title Page
	Copyrights
	Table of contents
	Introduction
	Required Equipment
	Overview

	Part I - Guided Tour of Robot Land
	Starting Out
	Sample Program #1 - Motion
	Sample Program #2 - Direction & Weapon Control
	If the Program Won't Compile
	Victorious Robot
	Cost of Living in Robot Land
	Sample Program #3 - Conditionals
	Sample Program #4 - CALL, GOTO & Labels

	Part II - More about Robots and Program Control
	Items on the Menu
	Edit
	Save
	Load

	Comments
	Naming the Robots
	Scan Sensors
	Firing Ranges
	Lasers
	Missiles

	Click, Bang, Boom and Beep
	Printing Your Program

	Part III - Reference Section
	Editor Line Commands
	Glossary of Robot Commands
	Robot Programming Terminology

	Part IV - Inhabitants of Robot Lands
	Back Cover

