

ALLDREAM

DRAGON 6809 EDITOR-ASSEMBLER AND MONITOR
120001

Alldream, in all machine readable formats and the written documentation
accompanying them, are copyrighted. The purchase of Alldream conveys to the
purchaser a licence to use Alldream for his/her own use and not for sale or free
distribution to others. No other licence, expressed or implied, is granted.

1

CONTENTS

ALLDREAM ...4
LOADING THE PACKAGE ..4
USINGTHEEDITOR ..5
 Inserting and Deleting Characters..5
 Scrolling................ .. 6
THE EDITOR COMMANDS ...6
 Inserting Lines ...7
 Line Deletion7
 String Searching8
 Repeating a FIND or CHANGE9
 Marking a Block of Lines9
 Duplicating Lines...9
 Cassette Input- Output ...9
 Loading from Cassette...10
 Merging Text Files ..11
 Printing ..11
 Cancelling Command Mode ..11
 The Recover Command ...12
 Executing the Assembler ...12
 Tabbing..12
 Restoring Text Mode ...12
6809 PROGRAMMING..12
6809 ADDRESSING MODES..14
 Inherent..14
 Accumulator ..14
 Immediate ..14
 Extended"..14
 Direct...14
 Extended Indirect............................... ...15
 Register..15
 Indexed ..15
 Relative Addressing (Branching)...16
 Program Counter Relative ...16
 Writing Assembler Source Code ...16
 The Gp-code Field ...17
 The Operand Field ...17
 Controlling the Size of Offsets ..18
 Registers ..19
 The Comments Field..19

2

ASSEMBLER DIRECTIVES...19
 FCB/FCC ..19
 The FDB Directive..20
 The RMB Directive...20
 The EQU Directive ...21
 The ORG Directive ...21
 The PUT Directive ..21
 The SETDP Directive ...21
ASSEMBLER OPERATION ...22
 Error Messages..22
 Assembler Keyboard Commands..23
 Testing The Object Program ...24
SUPPLEMENTARY INFORMATION..24
 Saving Object Code on Cassette ...24
 Alternate Positioning of Object Code ...25
 Accessing the Text Table ..25
APPENDIX A Sample Memory Map ..26
APPENDIX B Editor Operation and Commands27
APPENDIX Cl Instruction Gp-Codes...28
APPENDIX C2 Branch Instructions..29
APPENDIX C3 Assembler Directives...30
APPENDIX D Assembler Error Codes and Keyboard Commands .30
APPENDIX E System Error Messages..31
APPENDIX F Sample Programs...32
DREAMBUG..36
 Entering Dreambug...36
 Dreambug Commands...37
 Break Points ..37
 Adding and Deleting Break Points..38
 Testing with Break Points ...39
 Instruction Tracing..40
 Auto Tracing ...40
 Trace 1 or More Instructions...40
 Stop Mode Trace...41
 TraceHistory..42
 Normal Execution ...42
 Memory Dump..42
 Dis-Assembly (Un-Assemble Command)...43
 Using a Printer ..43
 Memory Examine and Change..43
 Register Modification.........44
 Evaluate Command...45
 Leaving Dreambug..45
 Maximum Workspace ...45
 Appendix G-DreambugCommands...46

3

 . ALLDREAM

Alldream is a software package for the Dragon 32 Microcomputer,
comprising an Editor Assembler (DREAM) and Monitor (DREAMBUG).

DREAM is designed to maintain files of general purpose text, and especially for
the preparation, maintenance and conversion to object code, of Assembler source
programs for the 6809 micro-processor. DREAM can produce complete
machine code programs, and routines which can be called from BASIC programs
via the USR function.

DREAMBUG is a full feature machine code testing tool and disassembler.

. LOADING THE PACKAGE

As ALLDREAM is designed for easy use together with BASIC, the cartridge is
not self-starting. Switch off the Dragon, insert the cartridge, and switch on again.
Before executing ALLDREAM, you must tell the machine to reserve some
memory for the package's work areas. ALLDREAM uses RAM just below the
BASIC ROM, working downwards from 32639. You must control the lowest
address available to ALLDREAM, by using the CLEAR statement. A good
starting point might be:

CLEAR 200,20000

This will reserve memory from 20001 to 32767 for ALLDREAM
sufficient for Assembler programs up to about 600 typical length lines, or about
350 full lines of text. About 18k still remains for a BASIC program, 200 bytes
of string space, and four high resolution graphics pages. Appendix A shows a
sample memory map with ALLDREAM installed.

Now you can execute DREAM by typing:

EXEC 49152

A title screen will appear, and the question:

OLD TEXT?

4

DREAM is asking whether you already have some text in memory which you
want to display. As you haven't, answer no by typing:

N

A blank screen will appear with the cursor flashing in the top left hand corner.
You are now ready to type in some text, or maybe your first Assembler program.

It is suggested that you first get familiar with the Editor by using it to manipulate
some general text.

. USING THE EDITOR

All t he keys on the Dragon keyboard will operate typomatically in DREAM.
That is, if you keep a key depressed for more than about a second, then it will
repeat at the rate of ten per second. You will find this particularly handy for
cursor positioning and scrolling.

DREAM can handle normal and inverse video characters. While the cursor is
moving, its position is indicated by a reversal of background colour of the
character under the cursor. Inverse video characters will be sent as lower case
letters to an attached printer. Lower case can be obtained by using SHIFT while
upper case lock is set, and vice versa.

Type some words onto the top line. You can use _ and _ to position the cursor
anywhere on the line. If you move the cursor over some typed characters you will
notice that they are not erased - you can correct" any characters without re-
typing the rest of the line. Nor do you need to pass the cursor over the rest of a
line after making any changes.

The CLEAR key can be used to blank out the rest of a line. All characters under
and to the right of the cursor are erased - only the current line is affected.

Pressing SHIFT and SPACE causes a skip to the next TAB column.
These are predefined to columns 8, 14, 23 and 31.

Inserting and Deleting Characters

To delete characters within a line, position the cursor on the leftmost unwaI}ted
character and press shift and _ together. The line will 'close up' and spaces
are shifted into the right hand end. To insert characters,

5

use shift and _ and a gap will open up at the cursor position ready for you
to type the missing characters. A word of warning: any characters shifted off the
end of the line are lost.

When the cursor reaches column 32 it will not move as further characters are
typed. You need to press ENTER to get onto the next line to continue typing.
Pressing ENTER also causes DREAM to accept the last line and store it in its
text table in memory - this is true of any command that moves the cursor onto
a different line.

Scrolling

Type something onto each line of the screen - using ENTER to access
subsequent lines. When you reach the foot of the screen keep entering lines and
the whole display will scroll up each time you press ENTER.

Press the up arrow and keep it pressed to go into typomatic mode. When the
cursor reaches the top of the screen the display will scroll back again until the
first line you entered is again displayed. Using the four arrow keys you can
position the cursor anywhere within the text ready to overtype, insert or delete
characters at that position.

A faster way of scrolling is to press SHIFT and 1 or SHIFT and r. These cause
the display to scroll by 8 lines (half a screen) at a time. Whenever possible the
cursor is kept on the same logical line. . THE EDITOR COMMANDS

So far we have discussed cursor positioning, scrolling, and general text editing.
DREAM also has a wide range of 'commands' which are accessed by typing the
BREAK key followed by a letter indicating the required action. As soon as you
press BREAK the current line is erased and an inverse oblique appears in column
1 to show that you are in command mode. The cursor is positioned in column 2
ready for you to type in the command. The data from the current line is not lost -

it will be re-instated when the command has been completed. Commands are not
executed until either ENTER or an up or down arrow key is pressed. Appendix B
lists all the Editor commands.

The HOME command displays the first 16 lines, putting the cursor at the start of
line 1. The END command shows the last 8 lines with the cursor on the last line
positioned half way down the screen. With the cursor sitting anywhere within the
text table, type BREAK followed by the letter H (for HOME) or E (for END).
Press ENTER and the command is obeyed instantly.

6

The QUIT command exits from DREAM back to Basic. Type BREAK then Q
and ENTER. You can then re-enter DREAM by typing EXEC and reply Y to the
OLD TEXT? prompt to re-display the text in memory, or reply N to erase the
table ready for something new.

Inserting Lines

The method of inserting new lines is to first add a block of blank lines at the
required point, and then to type the new data onto those blank lines. Position the
cursor anywhere on the line prior to which the new lines are to appear, and type
BREAK I followed by a number indicating the number of lines to insert. If you
don't specify a number then 1 line will be inserted. Any number of lines can be
inserted up to a practical limit of about 6000 depending on the amount of
memory you have reserved for DREAM. Press ENTER and the requested
number of blank lines will be inserted, leaving the cursor at the start of the first
new line, ready for you to type in the new data. The line over which you typed
the insert command is re-instated to its original data content.

If you attempt to insert more lines than will fit in the workspace, DREAM will
insert as many lines as it can, and will then clear the screen and show the
message FULL. Press any key to see the text table as it stands. You will now
need to delete one or more lines before making any further changes.

Blank lines only occupy 4 bytes each in the text table. As you fill them with data
so they grow in length up to 35 bytes for a full line. Hence the FULL message
may appear any time an extended line is accepted. You can always exit from
DREAM \QUIT command), reserve more memory (via CLEAR), and re-enter
DREAM with 'OLD TEXT?' equals Y.

Line Deletion

To delete lines, position the cursor on the first line to delete, and type BREAK
Dn where 'n' is the number of lines to be deleted. Omit 'n' to delete just one line.
'n' can be any number up to about 65000 but DREAM will never delete the last
line of the text table. You can use this fact to keep your own 'end of file' marker
on the last line if you like.

Lines can also be deleted by first using the MARK and END-MARK commands
\cD to mark a block of lines, then type BREAK DM to delete the block.

7

Whenever a line is deleted, or when a line is replaced by a shorter line, DREAM
always compresses the text table to drop the redundant material. Hen_e the text
table always occupies as little valuable memory space as possible. Deleting a lot
of lines can be relatively slow as DREAM has a lot of housekeeping work to do.
A flickering blob on the command line shows that DREAM is still at work.

String Searching

DREAM can be made to search the text table for any character string. Searching
always starts from the current line. To search the whole text table, first do a
HOME command.

The FIND command (BREAK F) will position the cursor on the first occurrence
of a string, with that line placed in the middle of the screen (if possible). If the
string is not found, the table is positioned at END. The command is entered on
the first line to be searched and has the form:

F/string/

Any non-blank character can be used to delimit the string e.g.,

F"12 1/2%"

Whatever character marks the start of the string must also mark the end.

The CHANGE command will search for one or all occurrences of a string, replacing
it by a second string. e.g.,

C/string1/string2/
C/string1/string2/ A

for one occurrence for
all occurrences

The replacement string can be longer or shorter than the searched string. To
remove a string completely, string2 can be a 'null' string. e.g.,

C/deletable//

If a new string is longer, take care, as it may cause characters to be shifted off the
right end of a line and lost.

8

Repeating a FIND or CHANGE

Pressing SHIFT and@togetherwill repeat the last FH'J.D or CHANGE
command, starting at the next line. For example, to 'find all occurrences of a
string, use F/string/ first, then type SHIFT @ repeatedly to find all subsequent
occurrences.

Marking a Block of Lines

Any number of continuous lines in the text table can be 'marked' for later use by
the REPLICATE, DELETE, PRINT or SAVE commands. First locate the first
line, of the block to be marked, and type BREAK M (for MARK) on it and press
ENTER. Next locate the last line of the block and type BREAK N (for END-
MARK) and press ENTER.

The first and last of the marked lines are flagged by a block graphic replacing the
right-most character.

Once 'marked' a block stays marked until cleared by the UN-MARK command
(BREAK U), or until another block is marked, or until any DELETE or INSERT
command is executed.

Duplicating Lines

A marked block oflines can be copied into another part of the text table by using
the REPLICATE command (BREAK R). First mark the lines using MARK and
END-MARK, then place the cursor on the line in front of which the duplicated
lines are to be inserted and type BREAK R (for REPLICATE).

On pressing ENTER the lines are copied. They have not been deleted from their
original position - they now exist twice in the text table.
You can delete them from the old place by the DM command if required.

Don't try to copy lines into a position between the MARK and ENDMARK lines.
You will not get a meaningful result.

Cassette Input - Output

Having created a valuable table of text using DREAM you will want to be able to
save it on tape and recall it at a later date. This can be done by using the SAVE
and LOAD commands. To save the complete text table, position the cursor at
HOME and enter the command:

9

S filename

Only one space must exist between the S and the filename, which is not enclosed
in quotes. Only the first 8 bytes of 'filename' are significant.

Set the cassette machine ready to record the press ENTER.

You can save a selected number of lines only, by adding a parameter to the
SAVE command, e.g.,

S25 filename

will create a named text file on cassette consisting of 25 lines starting with the
line on which you typed the command. Just one space must follow the number,
which must immediately follow the S.

A 'marked' block of lines can be saved by typing:

SM filename

This will create a tape file consisting of all lines between those marked by the
MARK and END-MARK commands inclusive.

Loading from Cassette

To load a DREAM text file from tape, enter the command:

L filename

observing the syntax rules specified for the SAVE command. Only the number
of characters you give for 'filename' will be used to match files on tape, e.g.,

LP

will match any file whose name starts with the letter P.

As the tape is\ read, the names of all file headers encountered will be shown on
the command line. When a file name that matches the LOAD
command is fbund, a flashing yellow blob at the right end of the
command line indicates that loading is proceeding.

Should any loading error occur, an inverse 'E' will appear to the left of the
flashing blob. In the eveat of this happening, press the reset button and reload the
file.

10

Merging Text Files

The LOAD command can be used to insert a DREAM file from tape into an
existing text table in memory. Thus you can save a block of lines from one text
table, load another text file, and insert the saved lines at any point. Do this by
entering the LOAD command on the line prior to which insertion is required.

Printing

The whole text table, or a selected number of lines, can be sent to a printer.
Position the cursor on the first line to be printed and enter the command:

P
Pn PM

to print all following lines or
to print the next 'n' lines or
to print a 'marked' block of lines

If you try this command without a printer connected, the Dragon will 'hang' and
you will have to press the 'RESET' button to recover. This will take you back
into BASIC.

You can pause the printer at the end of a line by pressing BREAK. Restart by
typing 'P'. Typing '0' will terminate printing.

The Dragon allows you some control over the control bytes which are sent to the
printer at the end of each line. Location 330 (decimal) is a count of the number of
bytes to be sent. Locations 331 onwards contain the required control bytes. When
you switch on the Dragon, location 3_O is initialised to 1, and locations 331, 332
to the values for CR (hex 0DJ and LF (hex 0AJ. If your printer needs both a CR
and LF then you should POKE 2 into location 330 before entering DREAM.
Other line termination sequences can be obtained by doing the appropriate
POKEs.

Cancelling Command Mode

DREAM commands are not executed until you press ENTER or an up or down
arrow. If you press a key after BREAK which does not correspond to a
recognised command, DREAM will reply with '?' when you press ENTER. If
you decide you don't want to execute any command, type BREAK again and the
data line will re-appear and command mode is cancelled.

The sequence BREAK, BREAK is in fact a valid quick way of returning the
cursor to column one.

11

The Recover Command

The RECOVER command (BREAK V) will enable you to recover from a typing
slip. For example, if you inadvertently hit the CLEAR key while editing a line,
and can't remember what you have lost, enter BREAK V and the line will re-
appear as it was before you started editing it. This will only work if you have the
presence of mind not to move the cursor off the current line before using
RECOVER.

Executing the Assembler

The ASSEMBLE command (BREAK A) will transfer control to the Assembler
part of DREAM. Before using this command you will need to read the
instructions on how to prepare Assembler source statements, and, if you are new
to the 6809, the section on 6809 programming. The Assembler uses the source
code you have prepared in the text table, and produces the corresponding
machine 'object' code, storing it directly in memory, from where it can be directly
executed.

Tabbing

When typing Assembler source programs, it is sometimes desirable, though not
necessary, to divide the statements into fixed fields on the screen for neatness
and readability. Tab positions have been predefined in DREAM at columns 1, 8,
14, 23 and 31, giving convenient positions for Label, Op-code, Operand, and
comments. Pressing SHIFT and the Space-bar together causes the cursor to skip
to the next Tab position.

Restoring Text Mode

This final Editor command is described here for completeness, though its
significance will be more apparent after you have used the Assembler and
executed machine code.

BREAK T re-initialises the Dragon to text mode, and is necessary when
returning to the Editor from a machine code program that has left the Dragon in
graphics mode. . 6809 PROGRAMMING

With its several 2-byte registers, the 6809 can operate internally as a 16-bit
processor for many operations. The registers are:

12

A Accumulator B Accumulator

D

X : Index Register

Y : Index Register

U : Stack Pointer / Index Register

S : Stack Pointer / Index Register

PC : Program Counter

E F H I N Z V C CC : Condition Code Reg

DP Direct Page Register

A and B are 8-bit general purpose accumulators used for arithmetic and logical
operations. They can also be considered together as the 16bit D accumulator for
certain instructions.

X and Y are 16-bit index registers, each used in a large number of indexed mode
and other instructions.

U and S are stack pointers, S being inherently used by the 6809 for subroutines
and interrupts. Both U and S share the same indexed mode addressing capabilities
as X and Y.

The program counter is a 16-bit pointer to the next instruction to be executed. It
can be used in Program Counter Relative addressing not
just by branch instructions, but wherever indexed mode addressing is allowed.
This enables the painless implementation of position independent object code.

The condition code Register holds 8 flags which represent the state of the
processor and the results of previous instructions. The flags are:

B7 E Entire Flag Used by the RTI instruction
B6 F FIRQ Mask Prevents FIRQ Interrupts
B5 H Half-Carry Used by the DAA instruction
B4 I IRQ Mask Prevents IRQ Interrupts
B3 N Sign Flag Set on negative result
B2 Z Zero Flag Set on Zero result
Bl V Overflow Set on 2's complement overflow
BO C Carry Set on an un-signed overflow

and by shift type operations

13

The 6800 and 6502 microprocessors have a fast, economical Direct Page
addressing mode in which a constant zero is used as the top 8-bits of the
address. The 6809 extends this concept by using the current contents of the DP
register to form the top 8-bits. Hence Direct Page Addressing can be used to
access any chosen 256 byte page of memory.

. 6809 ADDRESSING MODES

Inherent e.g., MUL

No operand field is coded as the operand is implied by the instruction.

Accumulator e.g., CLRA
RORB

Accumulator addressing is use.d by instructions that operate on a chosen
accumulator only, with no reference to memory. No operand field is allowed.

Immediate e.g., LDA
CMPX

#1
#$7FFF

Put a hash symbol in front of the operand to specify immediate addressing,
implying that it is to be used as a value rather than an address. The first example
will load the value 1 into A, not the contents of memory location 1.

Extended e.g., LDX >LABEL

For extended addressing, DREAM generates pairs of bytes (High,Low) to fully specify
a 16-bit memory address. The '>' symbol is only necessary when it is required to
over-ride conditions that would cause Direct addressing to be used.

Direct e.g., STA
INC

FIELD
<COUNT

Direct addressing produces 1 address byte which forms the low order 8bits of the
memory address. The high order 8-bits are supplied by the Direct Page
Register. DREAM will use Direct mode when the operand address is
computed to be within the page equal to the current SETDP setting
(initially zero). The optional '<' symbol will force Direct mode for this one
instruction.

14

Extended Indirect e.g., JSR (RADD)

In this mode, the operand is the address of a 16-bit value in memory, which will
be used to point to the operand.

Register e.g., TFR
PULS

A,DP
D,PC

Register addressing refers to the selection of the various 6809 registers.

Indexed

Indexed addressing mode has several options. DREAM will create the correctly
coded 'post-byte' following the op-code, for each option.

a) Zero Offset. e.g., LDA ,x

This, the fastest indexing mode, uses the specified X, Y, S or U register to point
directly to the operand in memory.

b) Post Increment e.g., CLR
LDD

,Y+
,U++

The specified indexing register is incremented by 1 or 2 after addressing the
operand in memory. No offset is permitted.

c) Pre Decrement e.g., CMPA
STB

,-X
,--Y

The indexing register is decremented by 1 or 2 before being used to address
memory. No offset is permitted.

d) Constant Offset e.g., NEG
ASL STX

I,X -
SMALL,Y
BIG,U

In this mode a signed offset and the contents of the indexing register are added to
form the effective operand address. The register contents are not changed. The
offset is a signed 5, 8 or 16-bit value. The assembler will usually create the
optimum size of offset.

e) Accumulator Offset e.g., CMPX
LEAY

15

A,U
D,X

A signed value in the A, B or D accumulator is used as the offset. Thus the offset
can be calculated at run time.

D Indexed Indirect. e.g., STD
ADDB

(,y++)
(4,S)

All the indexing modes excepting auto increment / decrement by 1, may have an
additional level of indirection specified. The indexing mode is calculated first,
and the 2-bytes at the memory thus addressed are used as the effective address of
the operand.

Relative Addressing (Branching)

The byte(s) following any branch instruction op-code are treated as a signed
two’s complement offset which is added to the Program Counter to obtain the
address of the next instruction. Offsets can be I-byte (short) or 2-bytes (long).
The assembler computes the offset - the programmer only has to code the
memory address (explicitly or symbolically), and request a short or long offset
by selection of the opcode mnemonic.

e.g., BRA LBEQ HERE
THERE

(short)
(long)

Program Counter Relative e.g., LEAY LABEL,PCR

The Program Counter can be used as a pointer register with an 8 or 16bit signed
offset. This addressing mode allows machine code programs to be produced
which can execute without alteration, anywhere in memory. DREAM will select
the optimum offset size, or it can be specified by the programmer.

A level of indirection can be applied additionally.

e.g., ADDD (POINT,PCR)

Writing Assembler Source Code

Using DREAM, you can code one Assembler source statement per line. These
statements consist of four fields - label, op-code, operand and comments.
The op-code field is mandatory, label and comments are optional, an operand is
required by some op-codes. The fields are separated by one or more spaces.

16

 e.g., LOOP LDA DATA; comment BEQ
LOOP; comment

 RTS ; comment

Instruction with a label
Instruction with no label
Instruction with op-code

only

When present, the label field must start in column 1 and have a
maximum length of 6 characters. All characters in the label are significant and
are used when matching labels coded in operand fields. Labels must only consist
of alphabetic and numeric characters, and must start with an alphabetic. There is
one exception: one label can start with the @ sign and is used to tell DREAM
the first statement to execute when you come to run the resultant machine code
program. It is advisable not to use the single letters A, B, D, X, Y, U or S nor
CC, DP or PC as labels as these are normally used to refer to the internal
registers of the 6809.

Examples of valid labels

TAG
@START
PART5

Examples of invalid labels

3RD
SECTION
IN-OUT

must not start with a numeric
too long
must not contain any special characters

The Op-code Field

At least one space must separate the label from the op-code field. If no label is
present, then there must be a space in column 1. The op-code field can contain
any of the standard Motorola mnemonics for 6809 instructions or Assembler
directives as listed in Appendix C.

The Operand Field

One space or more must separate the op-code field from the operand. Not all
Assembler statements require an operand, but when present it is used to represent
an address or a constant or one or more registers on which the instruction will
operate.

Within the operand field, hexadecimal numbers are preceded by a dollar sign ($).
Numbers not preceded by $ are assumed to be decimal.

17

An address operand, or an offset for indexed addressing, can be specified as a
decimal or hexadecimal value, or as a symbolic label which must be defined in
the label field of one source statement.

Examples

LDA $1234
LDA 1024
LDA DATA
LDA LEN,X
LDA 5,X

Absolute hex, address
Absolute decimal address
Symbolic address Symbolic
offset Absolute offset

An asterisk in the operand field implies the value of the Assembler's
program counter at the star't of the current statement.

Labels and absolute values can be combined using '+' and '-'. DREAM will do the
necessary arithmetic at assembly time.

Examples

LE AY
LDA
BRA

TAG+5,PCR END-
ST ART + $2C *+8

Immediate addressing mode is signified by the hash sign (#).

 LDA #'+ immediate character
 LDB #$2F immediate hex
 CMP A # 123 limmediate decimal
 LDX #TAG [mmediate symbolic

I

 Controlling the Size of Offsets

In the absence of any '<' or\ '>' symbol, DREAM always selects the
optimum offset size for absolmte offsets for indexed instructions. With
symbolic offsets, DREAM can select the optimum size, but may have to
execute several extra assembly passes to fully resolve the program. You can
avoid this by telling DREAM the offset size to use. The symbol '<' selects an 8-
bit offset, and '>' selects a 16-bit offset. You cannot request a 5-bit symbolic
offset.

DREAM will flag an error if an 8-bit offset is requested where a 16-bit is
necessary.

18

Examples

LDA
LDA
LDA
JMP LDA

Registers

OFFSET, X
<OFFSET,X
>OFFSET,X
«TABLE,PCR)
>l,X

size selected by Assembler 8-
bit offset requested 16-bit
offset requested note the
sequence (then < force a long
offset

Standard Motorola mnemonics are accepted for specifying registers. e.g.,

PSHS
PULU
TFR
LEAX
LDB

D,X
CC,Y,PC
A,DP B,S
,U

The Comments Field

Two or more spaces and a semi-colon should precede the optional comments
field, which is completely free-form.

. ASSEMBLER DIRECTIVES

FCB / FCC

FCB and FCC are used to format data bytes. The data can be specified as
decimal, hexadecimal, character or symbolic.

DREAM recognises both the FCC and FCB recommended Motorola directives,
however they are handled identically. This gives the advantage of allowing
decimal or hex, bytes to be coded together with character strings in the operand
field.

Either an oblique or a quote can be used to bound character strings the same
symbol must occur both ends.

A comma is used to separate sub-operands.

19

Examples of FCB (FCC)

FCB
FCB
FCB

FCC
FCB

$lF 123
-5,'A'

/TEXT/,0
VALUE

1 hex byte
1 decimal byte
1 signed decimal byte followed by one
character byte
A character string terminated by a null The
symbol must be defined elsewhere

When the value assigned to a byte exceeds 256, the low order byte value only is
used. e.g.,

FCB TAG

will generate the displacement of TAG within its page.

The FDB Directive

FDB will format 16-bit values occupying 2 bytes each. Character values are
preceded by a single quote. Commas separate sub-operands. Each sub-operand
generates 2 bytes.

Examples

FDB
FDB
FDB
FDB

'*

$1 LABEL
1,2,3

The RMB Directive

star and space
gives hex. 0001
gives 16-bit address
gives 3 consecutive 16-bit fields

RMB is used to 'reserve memory bytes' containing no specific value. The
Assembler's program counter is moved on by the number of bytes specified. If
the operand of the RMB includes any symbolic reference, DREAM may have to
use more than 2 passes to generate the object program.

Examples

RMB
RMB

RMB

5 LENGTH

LABEL-*

reserve 5 bytes
skip the number of bytes which
 LENGTH is resolved as.
the next statement will start at the
 memory location specified by LABEL

20

The EQU Directive

Equate can be used to assign a value to a symbol label. The Assembler's program
counter is not affected. If the operand includes a symbol not yet defined, DREAM
will execute more than 2 assembly passes.

Examples

TAG
XYZ
VAL

EQU
EQU
EQU

500
TAG+$66
FLD

assign the value 500 to TAG
XYZ will have the value 602 decimal V AL
has the same value or address as

FLD

The ORG Directive

ORG is used to set the Assembler's program counter, and hence the logical origin
for the following generated code. DREAM initially assumes an ORG value equal
to the bottom of the work-space. The label field is optional.

Examples

NEW
ORG
ORG

$5000
*+8

set p.c. to hex. 5000
equivalent to RMB 8

The PUT Directive

PUT directs the object code from the Assembler to a specific area of
RAM. DREAM assumes an initial PUT to the bottom of the workspace.
Normally PUT is preceded by an ORG, but they need not specify the same
address if you are going to move the object code before executing it, or if your
program uses position independent code throughout. Do not code a label field.

Examples

PUT
PUT

$68E0
",

The SETDP Directive

SETDP is used to tell the Assembler the current value of the Direct Page. The
Assembler will then generate Direct Page addressing mode where appropriate for
all following instructions where the operand is

21

computed to be within the specified page. DREAM assumes an initial SETDP of
zero. The operand should be a hex. value in the range $00 to $FF.

Example

SETDP $6A . ASSEMBLER OPERATION

The Assembler operates in a minimum of two passes of the source code. If you have
written a good number of statements, you will notice a
pause during pass 1 with just the pass number displayed. A symbol table is built
during this pass, occupying memory within the DREAM workspace, just below
the text table. This pass takes about 2 seconds per hundred source statements.

1

The second pass follows automatically, and the results are displayed on the
screen. You can freeze the display by pressing BREAK. DREAM will pause
itself whenever an error is found. Continue by typing A. Typing B will give a
slower scroll (BROWSE mode).

The display shows the following columns:

1
2

The ORG'd address of the object code in hexadecimal
Up to 5 bytes of object code in hexadecimal.
 OR an error message
The original source code. This column is continued on the next
 line if necessary.

3

Error Messages

When DREAM detects a source code error, it displays ERROR in inverse video
in the object code column, followed by a letter indicating the type of error. The
codes are listed in Table 1 in Appendix D.

If you specify a PUT directive that attempts to load the object code into ROM
memory, the message ROM? is displayed in the object code field.

If the object code attempts to overlay DREAM, or the text table or symbol table,
the screen is cleared and the message FULL displayed. Pressing any key will
return control to the Editor. Modify the PUT statement (if any) or QUIT from
DREAM, allocate more workspace and re-enter DREAM to try again.

22

The Assembler process normally completes at the end of pass 2, but if
you have coded a program involving complex resolving of symbolic labels, then
DREAM.will automatically go into a third or even four or more passes. If the
program cannot be resolved in 8 passes, Assembly terminates with the message
'UR' (un-resolvable). Go back to the Editor and supply more control over offset
lengths, or remove forward referencing labels from the operand field of such
statements as RMB or EQU. In general a 'UR' error is indicative of confused
programm_ng.

Assembler Keyboard Commands

At the end of the last pass, the total number of errors is shown, and DREAM
waits for a command. Table 2 in Appendix D lists all the Assembler keyboard
commands. To give a command, type BREAK followed by the letter and then
press ENTER. If you type a command wrongly, type BREAK again and re-enter
it.
You can display any number of further passes by BREAK A or B. Passes occur
in cycles on eight, with the first of each cycle being a nondisplay pass.

BREAK P will output the results to a printer as well. At the end of a line, typing
BREAK will pause the printer and display. Type P to continue printing. A or B
will continue without print.

Unless you are experienced in Assembler programming, DREAM will probably
have flagged some errors in your coding. When assembly is finished, the
command BREAK Q will QUIT from the Assembler back to the Editor so you
can correct your source code. The cursor will be positioned on the last statement
that you edited.

Alternatively, while the Assembler is pausing during a display pass, e.g., when an
error is shown, you may decide to return directly to the Editor to correct that
statement rather than wait for the assembly to complete. Pressing Q at this stage
will return control to the Editor with the same block of text displayed that was on
the Assembler screen.

Once you have a clean Assembly, the resultant program can be tested. The
command BREAK X will transfer control to your object program.

BREAK G will enter the DEBUG package "DREAMBUG". Dream tests for the
existence of the DEBUG package in memory and returns the message 'NF' if it
can not be found. mREAMBUG assists the testing of machine code programs by
providing breakpoint and memory examine and change facilities etc.)

23

Testing the Object Program

If you have not coded any PUT statement, then DREAM will store the object.
code from the Assembler starting at the bottom of the workspace. e.g., if you
reserved space with a statement CLEAR ssss,20000 then the first assembled
instruction will start at address 20001 decimal (hex. 4E21). Without an ORG
statement, this will also be the logical address of that instruction as displayed on
the output from the Assembler.

When you pass control to the object code by typing BREAK X at the end of
assembly, execution will start at the instruction that had a label starting with the
@ symbol. Ifthere is no such label, then execution will start at the address of the
bottom of the workspace (20001 etc.). On entry to your program the direct page
register is set to zero. DREAM transfers control by issuing a JSR instruction. If
your program ends with RTS then control will be returned to the Editor
(assuming successful execution).

DREAM automatically generates an RTS instruction at the end of your program,
provided your last source statement was an instruction and not an Assembler
Directive, but it is not a good idea to rely on this safety feature in your programs.

If your object program sets the Dragon into a graphics mode, then you may need
to type BREAK T ENTER when execution has completed, to re-establish text
mode for the Editor.

Object code generated by DREAM can also be executed via the Dragon EXEC
command or USR function, if you leave DREAM and use the relevant BASIC
statements. e.g.,

EXEC 20001 or
DEFUSR = 20001 : A = USR0(0)

. SUPPLEMENTARY INFORMATION

Saving Object Code on Cassette
Object Code can be saved on tape and re-loaded by using the CSAVEM
,and CLOADM commands as described in the DRAGON handbook. The code
can then be used at a later date without the ALLDREAM cartridge installed.

24

Alternate Positioning of Object Code

You might wish to assemble a routine which you would prefer to have
positioned at the top of RAM (say starting at 32001 dec.) so it can be
used with a very large BASIC program. Assemble the code with an
ORG of 32001, but with a PUT to the bottom of the workspace, and save the
object code from the PUT area, using CSA VEM. Switch the Dragon off and on
again to release DREAM's memory to BASIC. Load the saved object code using
CLOADM with an appropriate offset so it will be positioned at 32001.

Smaller routines can be assembled directly into the 128 byte area at the top of
RAM (hex. 7F80 to 7FFF) which ALLDREAM does not use. Start the program
with

ORG
PUT

$7F80
*

Accessing the Text Table

It can be useful to use the DREAM Editor to maintain files of data which can be
read by your own machine code programs. DREAM contains a routine which
you can access that will extract any line from the text table. An entry point to this
routine exists at 2 bytes into DREAM i.e., 49154 decimal (hex. CO02).

To use the routine, load register X with the address of a 32 byte area into which
the line is to be returned. Load register D with the line number required, the first
line is numbered zero. You must set up the direct page register to contain hex 7E
- the direct page used by ALLDREAM. If the D register refers to a line outside
the current text table range, then a 'plus' condition is returned in the condition
code register. For a valid line, the condition code will be set to 'minus'.

25

 Sample Memory Map with ALLDREAM Installed:

APPENDIX A

Decimal Address Hex Address

65535 – 65280 SYSTEM & I/O AREAS FFFF-FFOO

65279 – 57344 UNUSED FEFF-EOOO

57343 - 49152 ALLDREAM CARTRAGE DFFF-COOO

49151 - 32768 BASIC INTERPRITER ROM BFFF-8000

32767 - 32640 UNUSED 7FFF-7F80

32639 - 32512 Debug breakpoint and trace history

tables.

7F7F-7E00

control fields 7EFF-7E00

text table (grows down)

symbol table (grows down)

unused

32511 - 20001

DREAM

WORK

SPACE

object code (grows up)

7DFF-4E21

20000 -19800 BASIC STRING STORAGE 4E20-4D58

SYSTEM STACK (grows down)

FREE SPACE

19799 - 7680

 BASIC PROGRAM STORAGE

 (grows up)

4D57-1E00

7679 – 1536 GRAPHICS PAGES 1 TO 4 1DFF-0600

1535 - 1024 TEXT SCREEN MEMORY 05FF-0400

1023 – 0 SYSTEM USE 03FF-0000

26

The map shows the usage of memory with the ALLDREAM cartridge installed,
assuming an initial CLEAR 200,20000, and assuming the default 4 high
resolution graphics pages. The arrows show the direction in which expandable
area will grow.

Cursor Positioning, Scrolling, and Editing

APPENDIX B - EDITOR OPERATION

RIGHT ARROW cursor right
LEFT ARROW cursor left
SHIFT RIGHT ARROW insert character
SHIFT LEFT ARROW delete character
BREAK, BREAK cursor to column 1
CLEAR erase rest of current line
ENTER cursor to next line
UP ARROW cursor up
DOWN ARROW cursor down
SHIFT UP ARROW scroll back
SHIFT DOWN ARROW scroll forwards
SHIFT @ repeat last FIND or CHANGE command
SHIFT SPACE tab to pre-defined columns

Type BREAK then the command

COMMANDS

A execute assembler
C/s1/s2/ change string1 to string2
C/s1/s2/ A ditto - all occurrences
D delete 1 line
Dn delete n lines
DM delete marked block
E end - display last 8 lines
F/s1/ find string1
H home - display first 16 lines
I insert 1 line
In insert n lines
L name load DREAM file from tape
M mark first line of a block
N mark end line of a block
P print rest of text file
Pn print next n lines
PM print marked block
Q quit - return to BASIC

27

R replicate marked block
S name save complete text table on tape
Sn name save next n lines
SM name save marked block
T re-establish text mode
U un-mark marked block
V recover line as before editing

APPENDIX Cl - INSTRUCTION OP-CODES
(Excluding Branch Instructions)

m.b. = memory byte
16-bit m.v. refers to the contents of 2 consecutive memory bytes

ABX Unsigned add of B to X
ADCA,ADCB Add I m.b. plus carry flag to A or B
ADDA,ADDB Add I m.b. to A or B accumulator
ADDD Add 16-bit m.v. to D accumulator
ANDA,ANDB Logical AND of 1 m.b. with A or B
ANDCC Logical AND of immediate byte with CC
ASLA,ASLB Arithmetic left shift of 1 m.b. or A or B
ASRA,ASRB Arithmetic right shift of 1 m.b. or A or B
BITA,BITB Set CC as for ANDA,ANDB but leave A or B unchanged
CLR,CLRA,CLRB Clear 1 m.b. or A or B to zero
CMPA,CMPB Compare A or B with 1 m.b.
CMPD Compare D with 16-bit m.v.
CMPS,CMPU Compare stack pointer with memory
CMPX,CMPY Compare index register with memory
COM,COMA,COMB Invert all bits in a m.b. or A or B
CWAI AND immed. byte with CC and wait for interrupt
DAA Decimal adjust A accum.
DEC,DECA,DECB Decrement 1 m.b. or A or B by 1
EORA,EORB Exclusive-OR A or B with 1 m.b.
EXG Exchange contents of any 2 like-size regs.
INC,INCA,INCB Increment 1 m.b. or A or B by 1
JMP Jump to effective address
JSR Jump to subroutine
LDA,LDB Load A or B from 1 m.b.
LDD Load 16-bit m.v. into D
LDS,LDU Load 2 m.b.'s into stack pointer
LDX,LDY Load 2 m.b.'s into index register
LEAS,LEAU Load effective address into stack pointer

28

TST,TSTA,TSTB

LEAX,LEAY Load effective address into index register
LSL,LSLA,LSLB Logical left shift of 1 m.b. or A or B
LSR,LSRA,LSRB Logical right shift of 1 m.b. or A or B
MUL Unsigned multiply D = A times B
NEG,NEGA,NEGB Negate 1 m.b. or A or B
NOP Single byte no-operation
OR,ORA,ORB Logical OR of 1 m.b. with A or B
ORCC Logical OR of immediate byte with CC
PSHS,PSHU Push any subset of regs onto S or U stack
PULS,PULU Pull any subset of regs from S or U stack
ROL,ROLA,ROLB Rotate left 1 m.b. or A or B with carry
ROR,RORA,RORB Rotate right 1 m.b. or A or B with carry
RTI Return from Interrupt
RTS Return from Subroutine
SBCA,SBCB Subtract 1 m.b. and carry flag from A or B
SEX Extend the sign bit of B throughout A
STA,STB Store A or B into 1 m.b.
STD Store D into 2 m.b.'s
STS,STU Store stack pointer in memory
STX,STY Store index register in memory
SUBA,SUBB Subtract 1 m.b. from A or B
SUBD Subtract 16-bit m.v. from D
SWI,SWI2,SWI3 Software interrupts
SYNC Synchronise with interrupt
TFR Transfer contents of any register to any other of like size
TST,TSTA,TSTB Test the value of 1 m.b. or A or B

APPENDIX C2 - BRANCH INSTRUCTIONS

Gp-codes starting with L are 'long' branches producing a 16-bit signed offset

BCC,LBCC Branch if carry clear
BCS,LBCS Branch if carry set
BEQ,LBEQ Branch if equal
BGE,LBGE Branch if greater or equal (signed)
BGT,LBGT Branch if greater (signed)
BHI,LBHI Branch if high (un-signed)
BHS,LBHS Branch if high or same (un-signed)
BLE,LBLE Branch if less or equal (signed)
BLO,LBLO Branch if lower (un-signed)
BLS,LBLS Branch if lower or same (un-signed)

29

 BLT,LBLT Branch if less than (signed)
BMI,LBMI Branch if minus
BNE,LBNE Branch if not equal
BPL,LBPL Branch if plus
BRA,LBRA Branch always
BRN,LBRN Branch never (no-operation)
BSR,LBSR Branch to subroutine (un-conditional)
BVC,LBVC Branch if overflow clear
BVS,LBVS Branch if overflow set

APPENDIX C3 - ASSEMBLER DIRECTIVES

EQU Equate
FCB/FCC Format bytes and concatenated characters
FDB Format double bytes
ORG Set logical origin
PUT Set physical target address
RMB Reserve memory bytes
SETDP Declare Direct Page

TABLE 1 - Assembler Error Codes

APPENDIX D

B 8 bit offset requested where a 16 bit is required
C Invalid register combination on EXG or TFR
D Duplicate defined label
F Short branch used where a long branch is required
I Invalid indexing
L Invalid label field
O Invalid Op-code
R Invalid register
S Syntax error in operand field
U Undefined label found in operand
X Invalid constant

TABLE 2 - Assembler Keyboard Commands (Precede by BREAK)

A Assemble again (a further pass)
B Assemble at browse speed
G Enter Debug package
P Print assembled program
Q Quit - return to Editor
X Execute object program

30

Message

NO TEXT

FULL

NF

UR

ERROR X

ROM?

APPENDIX E

System Error Messages

Meaning

A reply of'Y' was given to OLD TEXT? on the title screen, but a
valid text table does not exist in RAM.

Reply N to start a new text table.

The DREAM workspace is full, or the output from the Assembler
is attempting to overlay DREAM or its internal tables.

Press enter to return to the Editor, then delete some lines or
correct any PUT/ORG statements.

Attempting to enter the Debug package but the Debug
identification pattern was not found in the expected position.

The Assembler has done 8 passes of the source code but has not
been able to resolve the program.

Return to the Editor and simplify the usage of forward symbolic
references. The problem can also be caused by coding a program
that attempts to generate different object code for the same area of
memory, by bad use of the ORG or PUT statements.

The Assembler has found an error in the source program.

Look in Appendix D for an explanation of x.

The object code from the Assembler is attempting to overlay an
area of ROM.

Return to the Editor and correct the PUT or ORG statements.

31

4000
4000
4000
4000
4000
4000
4000
4000 8E0400
4003
4003
4003
4003 8641
4005
4005
4005
4005
4005
4005
4005 A 780
4007
4007
4007
4007
4007 8C0600
400A 25F9
400C
400C
400C
400C
400C BD8006
400F 27FB
4011
4011
4011
4011 39
4012

4000
4000
4000
4000

APPENDIX F - SAMPLE PROGRAMS

*
*This program outputs the letter A
*to all positions of the screen

*
*Put the address of the start of VDU
*RAM into the X index register
*

LDX #$0400 * * Put the letter A into the A register
*

LDA #'A
*
*Store the contents of A into the *memory byte
indexed by X,
*then increment X by 1 to point to the *next
VDU byte

*
LOOP
*
* Ha ve we reached the end of the screen?
*-If not go back to LOOP
*

STA ,X+

CMPX
BLO

#$0600
LOOP

*
* All done-now wait for the key to be
*typed (JSR $8006 is like INKEY$)
*
WAIT

JSR BEQ $8006
WAIT

Any key typed? -no
(value is 0) *

* A key is pressed, return to DREAM
*

RTS
*

*
*That program executed too quickly to
*see what was happening-let's slow
*it down a bit

32

4000
4000 8E0400
4003 8641
4005 A780 LOOP
4007 *
4007 *Now load the value 5000 into Y and
4007 *count down to zero between each 'POKE'
4007 *to the screen
4007 *
4007 108E1388
400B 313F DELAY
400D 26FC
400F 8C0600
4012 25FI
4014 BD8006 WAIT
4017 27FB
4019
4019 39
401A
4000
4000
4000
4000
4000 8E0400
4003 8641
4005 A 780
4007
4007
4007
4007
4007 4C
4008 815A
400A 22F7
400C 400C 108E03E8
4010 313F DELAY
401226FC
4014
40148C0600 401725EC
4019 BD8006 WAIT
401C 27FB
401E
401E 39
401F

*

*

LDX
LDA
STA

LDY
LEAY
BNE
CMPX
BLO
JSR
BEQ

RTS

#$0400
#'A
,X+

#5000 -l,Y
DELAY
#$0600
LOOP
$8006
WAIT

*
*
*Now let's output the alphabet
*repeatedly
*

LDX
LDA
STA

#$0400
#'A ,X+

decrement Y repeat
until zero

Any key typed? -no
(value is 0)

RESET
LOOP

*
*Now increment the A register and test
*when it exceeds the letter z
*

*

*

INCA
CMPA
BHI

LDY
LE AY
BNE

CMPX
BLO
JSR
BEQ

RTS

#'Z RESET

1 000 -
l,Y
DELAY

#$0600
LOOP
$8006
WAIT

33

;increment A reg

go and reset to A

(a bit faster)

 ORCC #$10 set IRQ mask bit

*
 LDX #$0400
RESET LDA #'A
LOOP STA ,X+
*
 INCA

 CMPA #'Z
 BRI RESET

4000
4000
4000
4000
4000
4000
4000
4000 1AlO
4002
4002 8E0400
4005 8641 4007
A 780 4009
4009 4C 400A
815A 400C
22F7
400E
400E
400E
400E
400E
400E
400E 13
400F
400F
400F
400F
400F
400F F6FF02
4012
4012 8C0600
4015 25FO
4017 BD8006
401A 27FB
401C 401C
1CEF 401E 39
401F

0245 0245
8603 0247
1F8B 0249
0249 D704

*
*This version uses the Dragon's 50 hz
*clock to control the timing.

*
* First, disable the interrupt so we can
*use it

*

*
*Now wait for the interrupt-as it
*has been masked, execution will
*continue with the next instruction *after
SYNC

*
SYNC ;wait for IRQ

*
* Now clear the source of the interrupt *-
this is done by 'reading' one of *the
special I/O locations
*
 LDB $FF02
*
 CMPX #$0600
 BLO LOOP
WAIT JSR $8006

 BEQ WAIT
*
 ANDCC #$EF
 RTS

clear irpt source

Enable IRQ again

*

* Using Direct Page mode LDA
#$03 TFR A,DP
SETDP $03 STB
STORE tell assembler

34

024B 9EOO
024D OF34
024F F9025B
0252
0252 2004
0254 012603E8
0258 BD8006 NEAR
025B *
025B * Examples of constants & field defines.
025B *
025B 0258 TAG FDB
0300 ORG _OO PUT
0300 C350 VALUE FDB
0302 FDA8 NEG FDB
0304 96 STORE FCB
0305 WORK RMB
0311 5065746572 NAME FCC
0316 ODOA CRLF FCB
03181C2B09 MIX FCB
031B 0311 ANAME FDB
031D *
031D *examples of equated values
031D *
031D 800F CONOUT EQU
031D 0310 END EQU
031D OOOC LWORK EQU
031D 04BO BIG EQU
031D 0014 SMALL EQU
031D 0640 FAR EQU
031D 1234 OTHER EQU
031D *

LDX CLR
ADCB

* Branch etc
BRA
LBNE
JSR

VALUE
<OTHER
>TAG

NEAR
FAR $8006

NEAR
$0300
$3900
50000
-600
150 12
/Peter/
$D,$A
$IC,'+',9
NAME

.......etc.
force direct mode force
extended mode

absolute

2 byte decimal
negative
1 byte decimal
reserve 12 bytes
character string
hexadecimal bytes
hex, char, dec.
address constant

$800F
WORK + 11
NAME- WORK 1200
decimal 20
NEAR+1O00
$1234

35

hex. address

 . DREAMBUG

DREAMBUG is a comprehensive machine code test tool for the Dragon
32 microcomputer, and is supplied as part of the ALLDR1<;AM
cartridge.

With DREAMBUG you can:

Disassemble any 6809 machine code.

Obtain a formatted dump of any part of memory, in hexadecimal and
Ascii.

Dynamically switch between dump mode and disassembly.

Single step through machine code programs.

Dynamically trace the execution of machine code showing all registers
after each instruction, and the instructions in hexadecimal and
disassembled form.

Set up a "stop condition", e.g. to test when an area of memory is being
corrupted, and execute machine code until the condition is met.

Display the last 8 instructions that were executed up to the stop condition,
or from any trace.

Maintain a table of up to ten "break-points" for insertion in code to be
tested, and execute the code showing the registers and next instruction
when a break-point is reached.

Examine and change memory and registers.

Optionally output the results to a printer.

Do hexadecimal
converSIOn.

arithmetic and decimal to hexadecimal

. ENTERING DREAMBUG

You can enter DREAMBUG either directly from BASIC or from DREAM after
assembling a program.

36

The entry point from BASIC is at 54148 decimal (hex. D384). Enter:

EXEC 54148
 _
From DREAM type:

BREAK G at the end of the assembly process

DREAMBUG will display a title and. the prompt symbol ">". . DREAMBUG COMMANDS

All commands to DREAMBUG consist of a single letter followed by up to three
parameters. Example:

A 20001,3

The single letter identifies the command. One or more spaces can separate the
letter from the parameters (if any) which are separated by commas, and can be
decimal or hexadecimal values. For some commands, parametl;rs can also be
specified as symbolic labels referring to instructions in a program you have just
assembled, provided you entered DREAMBUG from DREAM.

Parameters written as numbers are assumed to be decimal. Hexadecimal values
must be preceded by a dollar sign ($). Symbolic labe,ls start with a letter or the
character "@". Example:

.j

123
$123
TAG5

decimal
hexadecimal
symbolic label

Commands are typed immediately after the ">" prompt symbol. A command line
cannot exceed 20 bytes and is completed by typing ENTER. While typing a
command, corrections can be made by typing <- to backspace and erase for re-
typing.

Commands which are not recognised, or which are syntactically or logically
incorrect, are flagged by"??".

Appendix G lists all the commands. . BREAK POINTS

You can maintain and use a table of up to 10 break points via the B, C, I and L
commands. "B" adds a break point entry to the table, "c" clears

37

an entry, "L" lists the table and "I" inserts an SWI (software interrupt) at each
break-point position, into the program to be tested, and then executes the target
program.

When an SWI instruction is executed, control returns to DREAMBUG which
will display the contents of the CPU registers, and the next instruction to be
executed. You can then use other DREAMBUG commands such as examine and
alter memory and registers as desired, before continuing execution.

Whenever control returns to DREAMBUG, either by reaching an SWI or by.
exiting from the target program via an RTS instruction etc., DREAMBUG
replaces all the inserted SWI break-points with the original instructions, so any
non break-point execution can occur without interference.

Break-points cannot be inserted into ROM. . ADDING AND DELETING BREAK POINTS

To add a break-point, type:

 Ba
Where "a" signifies the address for the break-point. Example:

B $4E26 B
5892
B LABEL

.Note that this only adds an entry to the table. Break-points are not inserted into
the target program until the "I" command is given.

To clear a break-point type:

Ca

e.g. C $4E26 C
5892 C
LABEL

Again, this only removes an entry from the table and does not directly affect the
machine code program.

To list the current break-point table, use the "L" command, which has no
parameters:

L

38

The list shows the hex address and the instruction in disassembled form, at each
break-point position. The symbolic label is also shown for break-point addresses
that were specified in that way.

. TESTING WITH BREAK POINTS

To execute the program to be tested, using break-pointing, use the "I" command,
which has one optional parameter to specify the starting address for execution. If
no parameter is given, execution continues from the last break-point reached, or
from the last traced instruction (see commands A, Sand T). Example:

I@
I LABEL I
$4E55 I

(processed from break-point or trace)

All breakpoints in the current table are inserted into the target code, and control
passes to the target program at the specified address. On the nrst entry, the Direct
Page register will be set to zero. Subsequently, all registers will be reset to their
values when execution was interrupted.

Execution then proceeds at full speed until a breakpoint is reached, when
DREAMBUG immediately regains control and lists the CPU registers across the
screen, in the sequence:

CC A B DP X Y U PC

A heading line is shown before the register display line, only when such a
heading line does not already exist on the screen.

All the register values are shown in hexadecimal. Example:

84 48 2A 00 14EF 0004 2112 4E27

The instruction that was about to be displayed is then shown in hex and
disassembled form. Example:

4E27 2715 BEQ $4E3E

ThiE\ is the instruction that will be executed next if you give an "I" or a
trace command with no start address.

39

If no break point was reached but the target program exists back to
DREAMBUG, then EXIT is shown in inverse video followed by the register
display. Again, all break points are removed from the target program.

When DREAMBUG has regained control you are free to execute any other
command to help testing the program. If you choose to enter the target program
again from a specific address, you should ensure that it is an address at the same
level on the system stack as when execution was interrupted.

. INSTRUCTION TRACING

The ability to trace the execution of machine code in RAM or ROM is supported
by four commands, A, H, S, and T.

. AUTO TRACING

The "A" command (Auto trace) reports the execution of each instruction and
proceeds immediately with the next. It takes two optional parameters. The first
specifies the address of the first instruction to be traced. If omitted, auto-trace
occurs from the last trace or break-point. The second parameter controls the
information displayed after each instruction: a value of 1 gives a register dump,
2 shows the instruction about to be executed, and 3 shows both registers and
instructions. The default value is 1. Example:

A TAG,2
A 20009
A ,3
A

Always use option 3 when printing an Auto Trace. Auto
trace mode is terminated by typing BREAK.

(param 1 omitted)

. TRACE 1 OR MORE INSTRCCTIONS

The "T" command (Trace) executes 1 or more instructions and then returns to
give a register dump and prompt. The first parameter specifies the starting
address. When omitted, trace continues from the last trace or break point.
Parameter 2 is also optional. It specifies the number of instructions to be
executed before giving a register dump and prompt. The default value is 1, the
maximum is 32767: Example:

40

T LABEL
T $4E21,5
T
T ,20 Execute the next 20 instructions.

. STOP MODE TRACE

The "S" command allows you to specify a condition to be tested for after each
machine instruction. When the condition is found, a register dump is given, and
the next instruction displayed. The command takes three parameters. The
optional first gives the starting address as in A and T commands. The second
gives the memory address involved in the stop condition test.

The optional third parameter specifies the condition to be tested for. When
omitted, trace stops when the byte at the test address changes from its value at
trace start. When parameter 3 is given as a decimal or hex. value, then trace stops
when one byte at the test address contains that value.

Parameter 3 can alternatively be coded as an asterisk (*). This will cause the
trace to terminate when the instruction at the test address is about to be executed.
Example:

S @,$4E55 stop when the contents of $4E55 changes
S ,TAG,$FF stop when the byte at TAG contains hex FF S ,$4E21, *
stop when the program counter reaches $4E21

The trace commands execute the target program at a maximum rate of 25
instructions per second. The 50 Hz timer clock is used extensively by
DREAMBUG and so programs which use the IRQ interrupt cannot be traced.

All the trace commands can be prematurely terminated by typing BREAK.

If any traced program goes through the exit back into DREAMBUG, then the
EXIT message is shown and tra_e mode terminates.

If trace command is given with no starting address (param. 1 omitted) but
DREAMBUG does not know where to trace from, the command is flagged as
logically invalid. This can occur Jor instance after the EXIT has been taken.

41

 . TRACE HISTORY

The "H" command (History) displays the last 8 (or less) instructions that were
executed by any of the "A", "S", or "T" trace commands. The instructions are
shown in hex. and disassembled form. The display is followed by a register
dump and the next instruction to be executed is shown.

This command is particularly useful after a stop condition has been encountered,
to show for instance the path via which an error occurred.

The history table is reset by any command that requests target program execution
from a specific address. . NORMAL EXECUTION

The "X" command executes the target program without break points or tracing.
The one optional parameter specifies the starting address. DREAMBUG regains
control only when the target program successfully negotiates the exit. Example:

X@
X

execute from the start label
execute from the last trace or break-point . MEMORY DUMP

The "D" command displays the contents of memory starting from the
address in parameter 1, up to the parameter 2 address. If address 2 is
omitted, a continuous dump is given.

. The dump shows the memory address in hexadecimal and the memory
contents in hex. and Ascii characters. Non-displayable Ascii bytes are shown as
full stops.

The dump can be terminated by typing BREAK.

While dumping, the display speed can be controlled by typing a number from 1
to 9, 1 gives the slowest scroll, 9 the fastest.

Typing a "0" (zero) will freeze the display until another character is typed.
Typing "U" will switch into the un-assemble mode (see Unassemble command).
Type "D" to get back into dump mode. Example:

D $4E21,$4E28

4E21 41 42 07 33
4E25 40 83 2A IF

AB.3
@.*.

42

 . DIS-ASSEMBLY (UN-ASSEMBLE COMMAND)

The "U" command gives a display of memory interpreted as machine
instructions, shown both in hexadecimal and in pseudo assembly language form.
The parameters are the start and finish addresses as in the "D" command.

Bytes which cannot be interpreted as valid 6809 instructions are shown in hex.
and Ascii where displayable. The character value of immediate operands is also
shown where displayable.

The keyboard can be used to control the display as in the Dump command.

Type "D" to switch into dump mode. Type BREAK to terminate disassembly.
Example:

. USING A PRINTER

If you have a printer available, the results from the trace commands, memory
dumps, and disassembly, can be output to the printer as well as the screen.

The DREAMBUG command "P" enables printing for all subsequent output. The
"0" command turns offprinting. These commands have no parameters.

. MEMORY EXAMINE AND CHANGE

The Memory Modify command (M) allows you to change the contents of any
bytes in RAM. The one optional parameter specifies the first byte to be displayed
for possible modification. If the parameter is omitted, the command continues
from the last byte accessed.

Type M and the RAM address. On typing ENTER the memory address is
displayed followed by its contents in hexadecimal. A dollar sign prompt is then
shown to prompt you that any replacement value must be given in hexadecimal.

43

U $79BB,$79C1

79BB BD8006 JSR $8006
79BE 8157 CMPA #$57 W
79CO 27F5 BEQ $79B7

To move on to the next byte, just press ENTER. Hold the ENTER key down to
go into auto-repeat.

To change memory contents, type pairs of hexadecimal characters against the
required start address. On pressing ENTER the values are loaded into memory
and the display moves onto the byte after the last one changed.

The memory bytes changed are re-read and checked equal to the requested new
values. If a mismatch exists, the message ROM? is shown and the "M" command
terminates.

As DREAMBUG's keyboard buffer is 20 bytes long, you can enter new data for
up to 10 consecutive bytes before typing ENTER. Each new byte value must be
typed as a hexadecimal pair.

For ease of readability, you can type commas between pairs - they are optional.

Typing a minus sign (-) causes the previous byte to be displayed. A string of
minuses can be entered to go back to a maximum of 20 bytes.

Type BREAK to exit from the "M" command.

Example: Assume bytes 4E60 to 4E63 contain the word "DARK" which is to be
changed to "DUCK".

M $4E60 (press ENTER)
4E60 44 $ (press ENTER, no change)
4E61 41 $55,43 (press ENTER, changes 2 bytes)
4E63 4B $-- (ENTER, go back 3 bytes)
4E60 44 $ (hold down ENTER)
4E61 55 $
4E62 43 $
4E63 4B $
> (press BREAK) . REGISTER MODIFICATION

The "R" command is a special case of memory modification as it displays the
memory bytes where the register contents were saved when DREAMBUG
regained control from your program. No parameter is required. The register
bytes are accessed in the sequence CC A B DP X-high X-low Y-high Y-Iow V-
high V-low PC-high PC-low. You may find it helpful to use the "H" command
first to get a labelled register dump across the screen.

44

After modifying registers as desired, these new values will be in force when you
continue execution of the target program.

. EVALUATE COMMAND

The "V" command takes two address type parameters and displays in
hexadecimal the sum of the two, and the value of the first minus the second. The
second parameter is optional - the default value is zero. Example:

V $400,$280
0680 0180

V 25,100
OOFD FFB5

(hex sum & difference)

V LABEL
4E25 4E25

V 10966
2AD6 2AD6

(address of LABEL)

(decimal to hex
conversion)

. LEAVING DREAMBUG

The "Q" command (Quit) returns control to DREAM or BASIC.

The break point table will have to be re-created on re-entry to DREAMBUG.

. MAXIMUM WORKSPACE

To allocate as much memory to ALLDREAM as possible, proceed as follows
before entering DREAM. Firstly use the PCLEAR command in BASIC to
reserve the minimum 1 high resolution graphics page. Then use the CLEAR
statement with zero string space, and lowering the second address. In order to
leave plenty of space for the CPU stack, it is advisable not to go below 3400
decimal. Example:

PCLEAR 1
CLEAR 0,3400

Then execute DREAM. The workspace now has over 29,000 bytes.

45

 APPENDIX G - DREAMBUG COMMANDS

Parameter Types:

a address (label or decimal or hex, max, value 65535)
b 1 byte value (decimal or hex, max, value 255)
c counter (decimal or hex, max, value 32767)

i indicator (decimal, value 1, 2 or 3)

* special (indicates PC value)

Commands: (brackets mark optional parameters - do not code

brackets as part of a command)

A (a) (,i) Auto trace from address "a"

i = 1 displays registers (default)
i = 2 shows instructions executed
i = 3 shows registers and instructions

B a Add break point for address "a" to table

C a Clear break point for address "a" from table

D (a1) (a2) Dump memory from a1 to a2

H Show trace history

I (a) Insert break points into target code & execute from address "a"

L List break point table

M (a) Memory examine and modify Printer off

P Printer on

Q Quit - return to DREAM or BASIC

R Register examine and modify

S (a1), a2 Trace execute from aI, stop when byte at a2 changes

S (a1),a2,b Stop when byte at a2 equals value "b"

S (a1),a2,* Stop when PC reaches a2

T (a1) (,c) Execute "c" instructions starting from a1

U (a1) (,a2) Un-assemble memory from a1 to a2

V a1 (,a2) Evaluate a1 +a2 and a1-a2

X (a1) Execute from a1 without trace or break points

Y Re-establish text mode

46

